68 resultados para Partial Discharge
Resumo:
Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes) differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.
Resumo:
The aim of the present study was to assess the influence of hyperbaric oxygenation (HBO) on rat liver regeneration before and after partial hepatectomy. Rats were sacrificed 54 h after 15% hepatectomy, liver and body weights were measured, and serum alanine transaminase (ALT) and aspartate transaminase (AST) activity and albumin levels were determined. The lipid peroxide level, as indicated by malondialdehyde production in the remnant liver was measured, and liver sections were analyzed by light microscopy. Five groups of 10 rats in each group were studied. The preHBO and pre-hyperbaric pressure (preHB) groups were treated before partial hepatectomy with 100% O2 and 21% O2, respectively, at 202,650 pascals, daily for 3 days (45 min/day). The control group was not treated before partial hepatectomy and recovered under normal ambient conditions after the procedure. Groups postHBO and postHB were treated after partial hepatectomy with HBO and HB, respectively, three times (45 min/day). The preHBO group presented a significant increase in the initiation of the regeneration process of the liver 54 h postoperatively. The liver/body weight ratio was 0.0618 ± 0.0084 in the preHBO compared to 0.0517 ± 0016 g/g in the control animals (P = 0.016). In addition, the preHBO group showed significant better liver function (evaluated by the lowest serum ALT and AST activities, P = 0.002 and P = 0.008, respectively) and showed a significant decrease in serum albumin levels compared to control (P < 0.001). Liver lipid peroxide concentration was lowest in the preHBO group (P < 0.001 vs control and postHBO group) and light microscopy revealed that the composition of liver lobules in the preHBO group was the closest to normal histological features. These results suggest that HBO pretreatment was beneficial for rat liver regeneration after partial hepatectomy.
Resumo:
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.
Resumo:
Carboxypeptidase M (CPM) is an extracellular glycosylphosphatidyl-inositol-anchored membrane glycoprotein, which removes the C-terminal basic residues, lysine and arginine, from peptides and proteins at neutral pH. CPM plays an important role in the control of peptide hormones and growth factor activity on the cell surface. The present study was carried out to clone and express human CPM in the yeast Pichia pastoris in order to evaluate the importance of this enzyme in physiological and pathological processes. The cDNA for the enzyme was amplified from total placental RNA by RT-PCR and cloned in the vector pPIC9, which uses the methanol oxidase promoter and drives the expression of high levels of heterologous proteins in P. pastoris. The cpm gene, after cloning and transfection, was integrated into the yeast genome, which produced the active protein. The recombinant protein was secreted into the medium and the enzymatic activity was measured using the fluorescent substrate dansyl-Ala-Arg. The enzyme was purified by a two-step protocol including gel filtration and ion-exchange chromatography, resulting in a 1753-fold purified active protein (16474 RFU mg protein-1 min-1). This purification protocol permitted us to obtain 410 mg of the purified protein per liter of fermentation medium. SDS-PAGE showed that recombinant CPM migrated as a single band with a molecular mass similar to that of native placental enzyme (62 kDa), suggesting that the expression of a glycosylated protein had occurred. These results demonstrate for the first time the establishment of a method using P. pastoris to express human CPM necessary to the development of specific antibodies and antagonists, and the analysis of the involvement of this peptidase in different physiological and pathological processes
Resumo:
In mammals, hexokinase (HK) is strategically located at the outer membrane of mitochondria bound to the porin protein. The mitochondrial HK is a crucial modulator of apoptosis and reactive oxygen species generation. In plants, these properties related to HK are unknown. In order to better understand the physiological role of non-cytosolic hexokinase (NC-HK) in plants, we developed a purification strategy here described. Crude extract of 400 g of maize roots (230 mg protein) contained a specific activity of 0.042 µmol G6P min-1 mg PTN-1. After solubilization with detergent two fractions were obtained by DEAE column chromatography, NC-HK 1 (specific activity = 3.6 µmol G6P min-1 mg PTN-1 and protein recovered = 0.7 mg) and NC-HK 2. A major purification (yield = 500-fold) was obtained after passage of NC-HK 1 through the hydrophobic phenyl-Sepharose column. The total amount of protein and activity recovered were 0.04 and 18%, respectively. The NC-HK 1 binds to the hydrophobic phenyl-Sepharose matrix, as observed for rat brain HK. Mild chymotrypsin digestion did not affect adsorption of NC-HK 1 to the hydrophobic column as it does for rat HK I. In contrast to mammal mitochondrial HK, glucose-6-phosphate, clotrimazole or thiopental did not dissociate NC-HK from maize (Zea mays) or rice (Oryza sativa) mitochondrial membranes. These data show that the interaction between maize or rice NC-HK to mitochondria differs from that reported in mammals, where the mitochondrial enzyme can be displaced by modulators or pharmacological agents known to interfere with the enzyme binding properties with the mitochondrial porin protein.
Resumo:
Patients with heart failure who have undergone partial left ventriculotomy improve resting left ventricular systolic function, but have limited functional capacity. We studied systolic and diastolic left ventricular function at rest and during submaximal exercise in patients with previous partial left ventriculotomy and in patients with heart failure who had not been operated, matched for maximal and submaximal exercise capacity. Nine patients with heart failure previously submitted to partial left ventriculotomy were compared with 9 patients with heart failure who had not been operated. All patients performed a cardiopulmonary exercise test with measurement of peak oxygen uptake and anaerobic threshold. Radionuclide left ventriculography was performed to analyze ejection fraction and peak filling rate at rest and during exercise at the intensity corresponding to the anaerobic threshold. Groups presented similar exercise capacity evaluated by peak oxygen uptake and at anaerobic threshold. Maximal heart rate was lower in the partial ventriculotomy group compared to the heart failure group (119 ± 20 vs 149 ± 21 bpm; P < 0.05). Ejection fraction at rest was higher in the partial ventriculotomy group as compared to the heart failure group (41 ± 12 vs 32 ± 9%; P < 0.0125); however, ejection fraction increased from rest to anaerobic threshold only in the heart failure group (partial ventriculotomy = 44 ± 17%; P = non-significant vs rest; heart failure = 39 ± 11%; P < 0.0125 vs rest; P < 0.0125 vs change in the partial ventriculotomy group). Peak filling rate was similar at rest and increased similarly in both groups at the anaerobic threshold intensity (partial ventriculotomy = 2.28 ± 0.55 EDV/s; heart failure = 2.52 ± 1.07 EDV/s; P < 0.0125; P > 0.05 vs change in partial ventriculotomy group). The abnormal responses demonstrated here may contribute to the limited exercise capacity of patients with partial left ventriculotomy despite the improvement in resting left ventricular systolic function.
Resumo:
Massive hepatectomy associated with infection induces liver dysfunction, or even multiple organ failure and death. Glycyrrhizin has been shown to exhibit anti-oxidant and anti-inflammatory activities. The aim of the present study was to investigate whether glycyrrhizin could attenuate endotoxin-induced acute liver injury after partial hepatectomy. Male Wistar rats (6 to 8 weeks old, weighing 200-250 g) were randomly assigned to three groups of 24 rats each: sham, saline and glycyrrhizin. Rats were injected intravenously with lipopolysaccharide (LPS) 24 h after 70% hepatectomy. Glycyrrhizin, pre-administered three times with 24 h intervals 48 h before hepatectomy, prolonged the survival of rats submitted to partial hepatectomy and LPS injection, compared with saline controls. Glycyrrhizin was shown to attenuate histological hepatic changes and significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase, at all the indicated times (6 rats from each were sacrificed 1, 3, 6, and 9 h after LPS injection), compared with saline controls. Glycyrrhizin also significantly inhibited hepatocyte apoptosis by down-regulating the expression of caspase-3 and inhibiting the release of cytochrome C from mitochondria into the cytoplasm. The anti-inflammatory activity of glycyrrhizin may rely on the inhibition of release of tumor necrosis factor-a, myeloperoxidase activity, and translocation of nuclear factor-kappa B into the nuclei. Glycyrrhizin also up-regulated the expression of proliferating cell nuclear antigen, implying that it might be able to promote regeneration of livers harmed by LPS. In summary, glycyrrhizin may represent a potent drug protecting the liver against endotoxin-induced injury, especially after massive hepatectomy.
Resumo:
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.
Resumo:
Elongation factor 1A is a highly conserved protein that participates in translation. We report the occurrence of two genes homologous to the eukaryotic Elongation Factor 1A in Bradysia hygida and describe the partial cloning and characterization of the B. hygida eukaryotic Elongation Factor 1A-F1 (BheEF1A-F1) gene. The pattern of BheEF1A-F1 expression in the salivary gland at the end of the fourth larval instar was investigated using real-time PCR. The results showed that BheEF1A-F1 expression levels are relatively constant at the time when rapid changes in protein synthesis occur in this tissue. In situ hybridization experiments coupled to Southern blot analyses showed that the BheEF1A-F1 gene is located at position 3d of the A chromosome and a second gene homologous to eEF1A is located at position 6a of the X chromosome. Southern blot analyses showed that both the BheEF1A-F1 gene and the second gene homologous to eEF1A constitute non-amplified genes. The present results contribute to the molecular characterization of a sciarid eEF1A gene.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP−LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.
Resumo:
We aimed to evaluate the effectiveness and safety of bismuth-containing quadruple therapy plus postural change after dosing for Helicobacter pylori eradication in gastrectomized patients. We compared 76 gastric stump patients with H. pylori infection (GS group) with 50 non-gastrectomized H. pylori-positive patients who met the treatment indication (controls). The GS group was divided into GS group 1 and GS group 2. All groups were administered bismuth potassium citrate (220 mg), esomeprazole (20 mg), amoxicillin (1.0 g), and furazolidone (100 mg) twice daily for 14 days. GS group 1 maintained a left lateral horizontal position for 30 min after dosing. H. pylori was detected using rapid urease testing and histologic examination of gastric mucosa before and 3 months after therapy. Mucosal histologic manifestations were evaluated using visual analog scales of the updated Sydney System. GS group 1 had a higher prevalence of eradication than the GS group 2 (intention-to-treat [ITT]: P=0.025; per-protocol [PP]: P=0.030), and the control group had a similar prevalence. GS group 2 had a lower prevalence of eradication than controls (ITT: P=0.006; PP: P=0.626). Scores for chronic inflammation and activity declined significantly (P<0.001) 3 months after treatment, whereas those for atrophy and intestinal metaplasia showed no significant change. Prevalence of adverse reactions was similar among groups during therapy (P=0.939). A bismuth-containing quadruple therapy regimen plus postural change after dosing appears to be a relatively safe, effective, economical, and practical method for H. pylori eradication in gastrectomized patients.
Resumo:
The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. Current studies on lipase production by submerged fermentation involve the use of agro-industrial residues aiming at increasing economic attractiveness. Based on these aspects, the objective of this work was to investigate lipase production by Penicillium verrucosum in submerged fermentation using a conventional medium based on peptone, yeast extract, NaCl and olive oil, and an industrial medium based on corn steep liquor, Prodex Lac (yeast hydrolysate), NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Kinetics of lipase production was evaluated and the highest enzymatic activities, of 3.15 and 2.22 U.mL-1, were observed when conventional and industrial media were used, respectively. The enzymatic extract showed optimal activity in the range from 30 to 40 °C and at pH 7.0. Although the industrial medium presents economical advantages over the conventional medium, the presence of agro-industrial residues rich in nitrogen and other important nutrients seemed to contribute to a reduction in lipase activity.
Resumo:
A crude extract of Spondias spp. was evaluated for the influence of pH and temperature on the activity and stability of its peroxidases and polyphenol-oxidases. In order to evaluate the conditions for the inactivation of the enzymes by heat treatment and by addition of a reducing agent, a factorial experimental design (n = 3) was employed using the Statistica (6.0) software package for data analysis. The optimal conditions found for peroxidases were: pH = 5.0 and temperature = 40 ºC, and for polyphenol-oxidases they were pH = 7.0 and temperature = 40 ºC. The peroxidases and polyphenol-oxidases were stable at all pH values tested (3.0 - 10.0) and maintained more than 60% of their activity at temperatures above 30 and 40 ºC, respectively. To achieve the total inactivation of these enzymes, two alternatives can be suggested: incubation at 92 ºC for 3.15 minutes with 200 mg.L-1 of ascorbic acid or incubation at 96 ºC for 2.80 minutes with 100 mg.L-1 of ascorbic acid.