91 resultados para PHLOEM-LIMITED BACTERIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pterotaenia fasciata is commonly recorded in rural areas in Argentina, but during a Diptera survey study developed in a reservoir which retains storm water from polluted canals in an urban area of Taboão da Serra municipality, SP, Brazil, we could capture P. fasciata adults. Enteric bacteria Escherichia coli T. Escherich, 1885 and Proteus sp. were isolated from P. fasciata collected in traps inside the reservoir and around it. Fecal coliforms and E. coli were found in the water of the reservoir. These records suggest that a high abundance of this species at urban areas with inadequate sewage canals should reveal these muscoid dipterans as mechanical vectors of enteric bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological N2 fixation is a major factor contributing to the increased competitiveness of Brazilian soybeans on the international market. However, the contribution of this process may be limited by adverse conditions to symbiotic bacteria, such as fungicide seed treatments. This study aimed to evaluate the effects of the fungicides carbendazim + thiram and carboxin + thiram on soybean nodulation, plant growth and grain yield. Two field experiments were carried out in the Cerrado region of the State of Roraima, in a soil with a low organic matter content and no soybean bradyrhizobia. In 2005, seeds were treated with fungicide carbendazim + thiram and commercial inoculants containing the Bradyrhizobium elkanii strains SEMIA 5019 and SEMIA 587 and B. japonicum strains SEMIA 5079 and SEMIA 5080. In 2006, soybean seeds were treated with the fungicides carbendazim + thiram or carboxin + thiram and inoculated separately with each one of the four strains. The plants were evaluated for number of nodules and dry weight, shoot dry weight and total N accumulated in shoots 35 days after plant emergence, while grain yield and N grain content were determined at harvest. Both fungicides reduced soybean nodulation, especially in the presence of B. elkanii strains. The fungicide carbendazim + thiram reduced nodulation by about 50 % and grain yield by more than 20 % (about 700 kg ha-1), in the treatment inoculated with of strain SEMIA 587.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron deficiency causes large productivity losses in eucalypt stands in extensive areas of the Brazilian Cerrado region, thus understanding B mobility is a key step in selecting genetic materials that will better withstand B limitation. Thus, in this study B mobility was evaluated in two eucalypt clones (68 and 129), under B sufficiency or B deficiency, after foliar application of the 10B isotope tracer to a single mature leaf. Samples of young tissue, mature leaves and roots were collected 0, 1, 5, 12 and 17 days after 10B application. The 10B:11B isotope ratio was determined by HR-ICP-MS. Samples of leaves and xylem sap were collected for the determination of soluble sugars and polyalcohols by ion chromatography. Boron was translocated within eucalypt. Translocation of foliar-applied 10B to the young tissues, mature leaves and roots was higher in clone 129 than in 68. Seventeen days after 10B application to a single mature leaf, between 14 and 18 % of B in the young tissue was originated from foliar B application. In plants with adequate B supply the element was not translocated out of the labeled leaf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum) and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil). Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight), height, and number of bacteria in the soil (pots with or without plants). Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05) and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments) with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer). The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94) and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N). After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal) were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA) and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland) adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA) production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa) as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the reference strainAzospirillum brasilense, Ab-V5. The results indicate the potential of T. spicatus as native plant source of plant growth promoting bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to study the production of siderophores by endophytic bacteria Methylobacterium spp., which occupy the same ecological niche as Xylella fastidiosa subsp. pauca (Xfp) in citrus plants. The siderophore production of Methylobacterium strains was tested according to chromeazurol agar assay test (CAS), Csáky test (hydroxamate-type) and Arnow test (catechol-type). In addition, the ability of Xfp to use siderophores, in vitro, produced by endophytic bacteria as source of iron, was evaluated. All 37 strains of Methylobacterium spp. tested were CAS-positive for siderophore production. Methylobacterium spp. produced hydroxamate-type, but not catechol-type siderophores. In vitro growth of Xfp was stimulated by the presence of supernatant siderophores of endophytic Methylobacterium mesophilicum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate in vitro and in vivo biocontrol of bacterial spot (Xanthomonas vesicatoria) and early blight (Alternaria solani) by the epiphytic bacteria Paenibacillus macerans and Bacillus pumilus. Tomato plants were previously sprayed with epiphytic bacteria, benzalkonium chloride and PBS buffer and, after four days, they were inoculated with A. solani and X. vesicatoria. To determine the phytopathogenic bacteria population, leaflet samples were collected from each treatment every 24 hours, for seven days, and plated on semi-selective medium. The effect of epiphytic bacteria over phytopathogens was performed by the antibiosis test and antagonistic activity measured by inhibition zone diameter. The epiphytic and benzalkonium chloride drastically reduced the severity of early blight and bacterial spot in comparison to the control (PBS). In detached leaflets, the epiphytic bacteria reduced in 70% the number of phytopathogenic bacteria cells in the phylloplane. The antibiosis test showed that the epiphytic bacteria efficiently inhibit the phytopathogens growth. In all the bioassays, the epiphytic bacteria protect tomato plants against the phytopathogens

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to isolate and characterize tannin-tolerant ruminal bacteria from crossbred Holstein x Zebu cows fed a chopped mixture of elephant grass (Pennisetum purpureum), young stems of "angico-vermelho" (Parapiptadenia rigida), and banana tree (Musa sp.) leaves. A total of 117 bacteria strains were isolated from enrichment cultures of rumen microflora in medium containing tannin extracts. Of these, 11 isolates were able to tolerate up to 3 g L-1 of tannins. Classical characterization procedures indicated that different morphological and physiological groups were represented. Restriction fragments profiles using Alu1 and Taq1 of 1,450 bp PCR products from the 16S rRNA gene grouped the 11 isolates into types I to VI. Sequencing of 16S rRNA PCR products was used for identification. From the 11 strains studied, seven were not identifiable by the methods used in this work, two were strains of Butyrivibrio fibrisolvens, and two of Streptococcus bovis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to identify growth-promoting bacteria isolated from Agaricus blazei and to evaluate their effect on mushroom mycelial growth and productivity. A total of 56 A. blazei-associated bacterial isolates were obtained from casing soil and identified by 16S rRNA gene sequencing. Bacteria were evaluated as to phosphate-solubilization ability, nitrogen-fixation capability, and secretion of cellulase. Superior isolates were tested for their to effect on A. blazei productivity, micelial growth, and on the contents of the polysaccharide-protein complex and of N, P, K, Ca, and Mg. Bacterial isolates were identified as actinobacteria (60%), firmicutes (20%), and proteobacteria (20%). Among them, ten isolates had phosphate-solubilization ability, eight showed nitrogen-fixation capability, and 12 isolates promoted A. blazei mycelium growth. Bacterial inoculation reduces time till harvest in up to 26 days, increases fresh mushroom yield up to 215%, and increases total polysaccharide-protein complex content twofold when compared to the non-inoculated control. The actinobacteria group is the predominant A. blazei-associated phylum.