56 resultados para PHARMACEUTICALS
Resumo:
Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer's law was obeyed in the concentration range of 1.5-15 µg mL-1 and 0.5-5.0 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 1.6932 x 10(4) and 3.748 x 10(4) L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 µg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job's continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.
Resumo:
N-methylpyrrolidone is a powerful solvent for variety of chemical processes due to its vast chemical properties. It has been used in manufacturing processes of polymers, detergents, pharmaceuticals rubber and many more chemical substances. However, it creates large amount of residue in some of these processes which has to be dealt with. Many well known methods such as BASF in rubber producing units have tried to regenerate the solvent at the end of each run, however, there is still discarding of large amount of residue containing NMP, which over time, could cause environmental concerns. In this study, we have tried to optimize regeneration of the NMP extraction from butadiene production. It is shown that at higher temperatures NMP is separated from the residue with close to 90% efficiency, and the solvent residue proved to be the most effective with a 6: 1 ratio.
Resumo:
Four simple titrimetric procedures are described for the determination of lisinopril (LNP) in bulk and in pharmaceuticals based on the neutralization of basic-amino and acidic carboxylic acid groups present in LNP. Method A is based on the neutralization of basic amino groups using perchloric acid as titrant in anhydrous acetic acid medium. Method B, method C and method D are based on neutralization of carboxylic acid group using NaOH, sodium methoxide and methanolic KOH, as titrants, respectively. Method A is applicable over 2.0-20.0 mg range and the calculations are based in the molar ratio of 1:2 (LNP:HClO4). Method B, method C and method D are applicable over 2.0-20.0 mg, 1.0-10.0 mg and 5.0-15.0 mg range, respectively, and their respective molar ratios are 1:1 (LNP:NaOH), 1:2 (LNP:CH3ONa) and 1:1 (LNP:KOH). Intraday and inter day accuracy and precision of the methods were evaluated and the results showed intra- and inter-day precision less than 2.7% (RSD), and accuracy of < 2.5 % (RE). The developed methods were applied to determine LNP in tablets and the results were validated statistically by comparing the results with those of the reference method by applying the Student's t-test and F-test. The accuracy was further ascertained by recovery studies via standard addition technique. No interferences from common tablet exipients was observed.
Resumo:
A simple, rapid and sensitive spectrophotometric method for the determination of captopril (CPT) in pharmaceutical formulations is proposed. This method is based on the reduction reaction of ammonium molybdate, in the presence of sulphuric acid, for the group thiol of CPT, producing a green compound (λ max 407 nm). Beer's law is obeyed in a concentration range of 4.60 x 10-4 - 1.84 x 10-3 mol l-1 of CPT with an excellent correlation coefficient (r = 0.9995). The limit of detection and limit of quantification were 7.31 x 10-6 e 2.43 x 10-5 mol l-1 of CPT, respectively. The proposed method was successfully applied to the determination of CPT in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the official reported method at 95 % confidence level.
Resumo:
The combination of two low-cost classical procedures based on titrimetric techniques is presented for the determination of pyridoxine hydrochloride in pharmaceuticals samples. Initially some experiments were carried out aiming to determine both pKa1 and pKa2 values, being those compared to values of literature and theoretical procedures. Commercial samples containing pyridoxine hydrochloride were electrochemically analysed by exploiting their acid-base and precipitation reactions. Potentiometric titrations accomplished the reaction between the ionizable hydrogens present in pyridoxine hydrochloride, being NaOH used as titrant; while the conductimetric method was based on the chemical precipitation between the chloride of pyridoxine hydrochloride molecule and Ag+ ions from de silver nitrate, changing the conductivity of the solution. Both methods were applied to the same commercial samples leading to concordant results when compared by statistical tests (95 and 98% confidence levels). Recoveries ranging from 99.0 to 108.1% were observed, showing no significant interference on the results.
Resumo:
The characterization of proteins from Brucella spp, the causative agent of brucellosis, has been the subject of intensive research. We have described an 18-kDa cytoplasmic protein of Brucella abortus and shown the potential usefulness of this protein as an antigen for the serologic diagnosis of brucellosis. The amino acid sequence of the protein showed a low but significant homology with that of lumazine synthases. Lumazine is an intermediate product in bacterial riboflavin biosynthesis. The recombinant form of the 18-kDa protein (expressed in E. coli) folds like the native Brucella protein and has lumazine-synthase enzymatic activity. Three-dimensional analysis by X-ray crystallography of the homolog Bacillus subtilis lumazine synthase has revealed that the enzyme forms an icosahedral capsid. Recombinant lumazine synthase from B. abortus was crystallized, diffracted X rays to 2.7-Å resolution at room temperature, and the structure successfully solved by molecular replacement procedures. The macromolecular assembly of the enzyme differs from that of the enzyme from B. subtilis. The Brucella enzyme remains pentameric (90 kDa) in its crystallographic form. Nonetheless, the active sites of the two enzymes are virtually identical at the structural level, indicating that inhibitors of these enzymes could be viable pharmaceuticals across a broad species range. We describe the structural reasons for the differences in their quaternary arrangement and also discuss the potential use of this protein as a target for the development of acellular vaccines.
Resumo:
At the present time, protein folding is an extremely active field of research including aspects of biology, chemistry, biochemistry, computer science and physics. The fundamental principles have practical applications in the exploitation of the advances in genome research, in the understanding of different pathologies and in the design of novel proteins with special functions. Although the detailed mechanisms of folding are not completely known, significant advances have been made in the understanding of this complex process through both experimental and theoretical approaches. In this review, the evolution of concepts from Anfinsen's postulate to the "new view" emphasizing the concept of the energy landscape of folding is presented. The main rules of protein folding have been established from in vitro experiments. It has been long accepted that the in vitro refolding process is a good model for understanding the mechanisms by which a nascent polypeptide chain reaches its native conformation in the cellular environment. Indeed, many denatured proteins, even those whose disulfide bridges have been disrupted, are able to refold spontaneously. Although this assumption was challenged by the discovery of molecular chaperones, from the amount of both structural and functional information now available, it has been clearly established that the main rules of protein folding deduced from in vitro experiments are also valid in the cellular environment. This modern view of protein folding permits a better understanding of the aggregation processes that play a role in several pathologies, including those induced by prions and Alzheimer's disease. Drug design and de novo protein design with the aim of creating proteins with novel functions by application of protein folding rules are making significant progress and offer perspectives for practical applications in the development of pharmaceuticals and medical diagnostics.
Resumo:
Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da) with the inhibitors benzamidine and berenil at pH 8.0, 25ºC and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05). Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp), a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively). The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.
Resumo:
Nanoscience and nanotechnology are new frontiers of this century. Their application to the agriculture and food sectors is relatively recent compared with their use in drug delivery and pharmaceuticals. Smart delivery of nutrients, bioseparation of proteins, rapid sampling of biological and chemical contaminants, and nanoencapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. In this review, some applications of nanotechnology in agro-food sector are discussed.
Resumo:
In recent decades, there has been an increase in the studies of isomaltulose obtainment, due to its physicochemical properties and physiological health benefits. These properties, which include low cariogenicity, low glycemic index and greater stability, allow the use of this sweetener as a substitute for sucrose in foods; besides the fact that it can be converted to isomalt, a dietary non-cariogenic sugar alcohol used in pharmaceuticals as well as in the food industry. Isomaltulose (6-O-α-D-glucopyronosyl-1-6-D-fructofuranose) is a disaccharide reducer obtained by the enzymatic conversion of sucrose - the α-glucosyltransferase enzyme. Different treatments were performed for the preparation of whole cells; lysed cells; and crude enzyme extract of Erwinia sp. D12 strain immobilized in calcium alginate. The packed bed column of granules, containing Erwinia sp. cells sonicated and immobilized in calcium alginate (CSI), reached a maximum conversion of 53-59% sucrose into isomaltulose and it presented activity for 480 hours. The converted syrup was purified and the isomaltulose crystallization was performed through the lowering of temperature. The isomaltulose crystals presented purity of 96.5%.
Resumo:
Abstract An accurate, reliable and fast multianalyte/multiclass ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the simultaneous analysis of 23 pharmaceuticals, belonging to different classes amphenicols, sulfonamides, tetracyclines, in honey samples. The method developed consists of ultrasonic extraction followed by UPLC–ESI–MS/MS with electrospray ionization in both positive mode and negative mode. The influence of the extraction solvents and mobile phase composition on the sensitivity of the method, and the optimum conditions for sample weight and extraction temperature in terms of analyte recovery were extensively studied. The identification of antibiotics is fulfilled by simultaneous use of chromatographic separation using an Acquity BEH C18 (100 mm x 2.1 mm, 1.7 µm) analytical column with a gradient elution of mobile phases and tandem mass spectrometry with an electrospray ionization. Finally, the method developed was applied to the determination of target analytes in honey samples obtained from the local markets and several beekeepers in Muğla, Turkey. Ultrasonic-extraction of pharmaceuticals from honey samples is a well-established technique by UPLC–ESI–MS/MS, the uniqueness of this study lies in the simultaneous determination of a remarkable number of compounds belonging to 23 drug at the sub-nanogram per kilogram level.