47 resultados para Non-Rigid Structure from Motion
Resumo:
Forest structure determines light availability for understorey plants. The structure of lowland Amazonian forests is known to vary over long edaphic gradients, but whether more subtle edaphic variation also affects forest structure has not beenresolved. In western Amazonia, the majority of non-flooded forests grow on soils derived either from relatively fertile sediments of the Pebas Formation or from poorer sediments of the Nauta Formation. The objective of this study was to compare structure and light availability in the understorey of forests growing on these two geological formations. We measured canopy openness and tree stem densities in three size classes in northeastern Peru in a total of 275 study points in old-growth terra firme forests representing the two geological formations. We also documented variation in floristic composition (ferns, lycophytes and the palm Iriartea deltoidea) and used Landsat TM satellite image information to model the forest structural and floristic features over a larger area. The floristic compositions of forests on the two formations were clearly different, and this could also be modelled with the satellite imagery. In contrast, the field observations of forest structure gave only a weak indication that forests on the Nauta Formation might be denser than those on the Pebas Formation. The modelling of forest structural features with satellite imagery did not support this result. Our results indicate that the structure of forest understorey varies much less than floristic composition does over the studied edaphic difference.
Resumo:
ABSTRACT The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.