69 resultados para Neuromuscular blockers - cisatracurium
Resumo:
A distrofia muscular de Duchenne (DMD) é uma alteração neuromuscular caracterizada por contínua necrose muscular e degeneração, com eventual fibrose e infiltração por tecido adiposo. O aumento progressivo da fibrose intersticial no músculo impede a migração das células miogênicas, necessárias para a formação muscular. O modelo canino constitui-se nas melhores fenocópias da doença em humanos, quando comparados com outros modelos animais com distrofia. O tratamento antifibrose de pacientes DMD, tendo como alvo os mediadores da citocina, TGF-beta, e o tratamento com antiinflamatórios, podem limitar a degeneração muscular e contribuir para a melhora do curso da doença. O presente estudo teve como objetivo observar os possíveis efeitos adversos na fisiologia renal, por meio de avaliação bioquímica sanguínea e da pressão arterial, verificando a viabilidade do uso do Losartan (um inibidor de TGF-beta) nos cães afetados pela distrofia muscular. Foram utilizados quatro cães adultos, sendo dois machos e duas fêmeas. Utilizou-se a dose de 50mg de Losartan, administrada via oral, uma vez ao dia. Os exames clínicos, bem como alterações na função renal, o nível do potássio sérico e a pressão arterial não evidenciaram reação adversa durante todo o período do experimento. O uso de Losartan, por um período de 9 semanas, mostrou-se como uma terapia segura para o tratamento antifibrótico em cães adultos, não afetando a função renal ou pressão arterial dos animais.
Padronização de parâmetros eletrocardiográficos de cães da raça Golden Retriever clinicamente sadios
Resumo:
A distrofia muscular de Duchenne (DMD) em humanos é uma alteração neuromuscular hereditária, de caráter recessivo, ligada ao cromossomo X e causada pela ausência ou disfunção da distrofina. Clinicamente, caracteriza-se por grave alteração na musculatura esquelética, resultando em morte precoce do indivíduo acometido. Em cães da raça Golden Retriever, a mutação que leva à distrofia muscular ocorre espontaneamente e a extensa homologia entre a patogênese da DMD e da distrofia muscular do Golden Retriever permite qualificar o cão como o principal substituto de humanos nos testes clínicos de novas terapias. O miocárdio deficiente em distrofina é mais vulnerável à sobrecarga de pressão e os pacientes com DMD podem desenvolver cardiomiopatia dilatada, hipertensão arterial e o eletrocardiograma pode se apresentar distintamente anormal. No presente estudo, foram avaliados exames eletrocardiográficos de 38 cães da raça Golden Retriever clinicamente sadios (20 animais de até 12 meses de idade e 18 animais entre 12 e 36 meses de idade), com a finalidade de se obter parâmetros para a padronização do eletrocardiograma nessa referida raça, o que futuramente poderá servir de referência na identificação de cães portadores ou afetados pela distrofia muscular. Os valores eletrocardiográficos obtidos encontraram-se dentro dos valores de normalidade e referência para as diferentes raças de cães; e as variáveis peso e idade alteraram significativamente a freqüência cardíaca e a amplitude do complexo QRS.
Resumo:
We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus
Resumo:
Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa) probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM) immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation
Resumo:
Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.
Resumo:
Physiological and pharmacological research undertaken on sloths during the past 30 years is comprehensively reviewed. This includes the numerous studies carried out upon the respiratory and cardiovascular systems, anesthesia, blood chemistry, neuromuscular responses, the brain and spinal cord, vision, sleeping and waking, water balance and kidney function and reproduction. Similarities and differences between the physiology of sloths and that of other mammals are discussed in detail.
Resumo:
In rats, the nitric oxide (NO)-synthase pathway is present in skeletal muscle, vascular smooth muscle, and motor nerve terminals. Effects of NO were previously studied in rat neuromuscular preparations receiving low (0.2 Hz) or high (200 Hz) frequencies of stimulation. The latter frequency has always induced tetanic fade. However, in these previous studies we did not determine whether NO facilitates or impairs the neuromuscular transmission in preparations indirectly stimulated at frequencies which facilitate neuromuscular transmission. Thus, the present study was carried out to examine the effects of NO in rat neuromuscular preparations indirectly stimulated at 5 and 50 Hz. The amplitude of muscular contraction observed at the end (B) of a 10-s stimulation was taken as the ratio (R) of that obtained at the start (A) (R = B/A). S-nitroso-N-acetylpenicillamine (200 µM), superoxide dismutase (78 U/ml) and L-arginine (4.7 mM), but not D-arginine (4.7-9.4 mM), produced an increase in R (facilitation of neurotransmission) at 5 Hz. However, reduction in the R value (fade of transmission) was observed at 50 Hz. N G-nitro-L-arginine (8.0 mM) antagonized both the facilitatory and inhibitory effects of L-arginine (4.7 mM). The results suggest that NO may modulate the release of acetylcholine by motor nerve terminals.
Resumo:
Previous studies have shown that rats withdrawn from long-term treatment with dopamine receptor blockers exhibit dopaminergic supersensitivity, which can be behaviorally evaluated by enhanced general activity observed in an open-field. Recently, it has been reported that co-treatment with the non-benzodiazepine anxiolytic buspirone attenuates the development of haloperidol-induced dopaminergic supersensitivity measured by open-field behavior of rats. The aims of the present study were: 1) to determine, as previously reported for rats, if mice withdrawn from long-term neuroleptic treatment would also develop dopaminergic supersensitivity using open-field behavior as an experimental paradigm, and 2) to examine if acute buspirone administration would attenuate the expression of this behavioral dopaminergic supersensitivity. Withdrawal from long-term haloperidol treatment (2.5 mg/kg, once daily, for 20 days) induced a significant (30%) increase in ambulation frequency (i.e., number of squares crossed in 5-min observation sessions) but did not modify rearing frequency or immobility duration in 3-month-old EPM-M1 male mice observed in the open-field apparatus. Acute intraperitoneal injection of buspirone (3.0 and 10 but not 1.0 mg/kg, 12-13 animals per group) 30 min before open-field exposure abolished the increase in locomotion frequency induced by haloperidol withdrawal. These data suggest that the open-field behavior of mice can be used to detect dopaminergic supersensitivity, whose expression is abolished by acute buspirone administration.
Resumo:
We examined the effect of several K+ channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium chloride (TEA), 4-aminopyridine (4-AP), and cesium on the ability of fentanyl, a clinically used selective µ-opioid receptor agonist, to promote peripheral antinociception. Antinociception was measured by the paw pressure test in male Wistar rats weighing 180-250 g (N = 5 animals per group). Carrageenan (250 µg/paw) decreased the threshold of responsiveness to noxious pressure (delta = 188.1 ± 5.3 g). This mechanical hyperalgesia was reduced by fentanyl (0.5, 1.5 and 3 µg/paw) in a peripherally mediated and dose-dependent fashion (17.3, 45.3 and 62.6%, respectively). The selective blockers of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 µg/paw) and tolbutamide (80, 160 and 240 µg/paw) dose dependently antagonized the antinociception induced by fentanyl (1.5 µg/paw). In contrast, the effect of fentanyl was unaffected by the large conductance Ca2+-activated K+ channel blocker ChTX (2 µg/paw), the small conductance Ca2+-activated K+ channel blocker apamin (10 µg/paw), or the non-specific K+ channel blocker TEA (150 µg/paw), 4-AP (50 µg/paw), and cesium (250 µg/paw). These results extend previously reported data on the peripheral analgesic effect of morphine and fentanyl, suggesting for the first time that the peripheral µ-opioid receptor-mediated antinociceptive effect of fentanyl depends on activation of ATP-sensitive, but not other, K+ channels.
Resumo:
Size changes in muscle fibers of subjects with chronic heart disease (CHD) have been reported, although a consensus has not been achieved. The aims of the present study were to investigate a possible association between CHD and fiber size changes in the brachial biceps compared to subjects without heart disease. Forty-six muscle samples were obtained in autopsies of individuals (13 to 84 years) without neuromuscular disorders, 19 (10 males and 9 females) with, and 27 (14 males and 13 females) without CHD. In all cases muscle sections were stained with hematoxylin and eosin and processed for the visualization of myofibrillar ATPase activity. The lesser diameter of type 1 and type 2 fibers was obtained tracing their outlines (at least 150 fibers of each type per sample) onto an image analyzer connected to a computer. The results were analyzed statistically comparing males and females with and without CHD. Type 1 fiber mean lesser diameters were 51.51 and 54.52 µm in males (normal range 34-71 µm) and 45.65 and 55.42 µm in females (normal range 34-65 µm) without and with CHD, respectively; type 2 fibers measured 54.31, 58.23, 41.15, and 49.57 µm, respectively (normal range 36-79 µm for males and 32-59 µm for females). No significant difference in fiber size was detected in 24 males with and without CHD, while in 22 females there was a significant increase in size in those with cardiomyopathy. We concluded that CHD does not determine significant changes in fiber size. However, in females, there is some hypertrophy which, despite within normal range, may reflect morphologic heterogeneity of the sample, or the daily life activities in the upper limbs as a compensatory mechanism to fatigability that affect predominantly the lower limbs in subjects with CHD.
Resumo:
Blood pressure pattern was analyzed in 12 complete quadriplegics with chronic lesions after three months of treadmill gait training. Before training, blood pressure values were obtained at rest, during treadmill walking and during the recovery phase. Gait training was performed for 20 min twice a week for three months. Treadmill gait was achieved using neuromuscular electrical stimulation, assisted by partial body weight relief (30-50%). After training, blood pressure was evaluated at rest, during gait and during recovery phase. Before and after training, mean systolic blood pressures and heart rates increased significantly during gait compared to rest (94.16 ± 5.15 to 105 ± 5.22 mmHg and 74.27 ± 10.09 to 106.23 ± 17.31 bpm, respectively), and blood pressure decreased significantly in the recovery phase (86.66 ± 9.84 and 57.5 ± 8.66 mmHg, respectively). After three months of training, systolic blood pressure became higher at rest (94.16 ± 5.15 mmHg before training and 100 ± 8.52 mmHg after training; P < 0.05) and during gait exercise (105 ± 5.22 mmHg before and 110 ± 7.38 mmHg after training; P < 0.05) when compared to the initial values, with no changes in heart rate. No changes occurred in blood pressure during the recovery phase, with the lower values being maintained. A drop in systolic pressure from 105 ± 5.22 to 86.66 ± 9.84 mmHg before training and from 110 ± 7.38 to 90 ± 7.38 mmHg after training was noticed immediately after exercise, thus resulting in hypotensive symptoms when chronic quadriplegics reach the sitting position from the upright position.
Resumo:
The main function of the cardiac adrenergic system is to regulate cardiac work both in physiologic and pathologic states. A better understanding of this system has permitted the elucidation of its role in the development and progression of heart failure. Regardless of the initial insult, depressed cardiac output results in sympathetic activation. Adrenergic receptors provide a limiting step to this activation and their sustained recruitment in chronic heart failure has proven to be deleterious to the failing heart. This concept has been confirmed by examining the effect of ß-blockers on the progression of heart failure. Studies of adrenergic receptor polymorphisms have recently focused on their impact on the adrenergic system regarding its adaptive mechanisms, susceptibilities and pharmacological responses. In this article, we review the function of the adrenergic system and its maladaptive responses in heart failure. Next, we discuss major adrenergic receptor polymorphisms and their consequences for heart failure risk, progression and prognosis. Finally, we discuss possible therapeutic implications resulting from the understanding of polymorphisms and the identification of individual genetic characteristics.
Resumo:
Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11) and control (N = 10) groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD) of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline) were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.
Resumo:
Primary hyperparathyroidism is an endocrine disorder with variable clinical expression, frequently presenting as asymptomatic hypercalcemia in Western countries but still predominantly as a symptomatic disease in developing countries. The objective of this retrospective study was to describe the diagnostic presentation profile, parathyroidectomy indication and post-surgical bone mineral density follow-up of patients with primary hyperparathyroidism seen at a university hospital. We found 115 patients (92 women, median age 56 years) with primary hyperparathyroidism diagnosed during the last 20 years. We defined symptomatic patients based on the presence of any classical symptom affecting bone, kidney or the neuromuscular system. Surgical criteria followed the guidelines of the National Institutes of Health regarding asymptomatic primary hyperparathyroidism. Symptomatic patients and patients meeting surgical criteria for parathyroidectomy were 66 and 93% of the sample, respectively. Median calcium and parathyroid hormone values were 11.9 mg/dL and 189 pg/mL, respectively. After surgical treatment, 97% of patients were cured, with increases in bone mineral density of 19.4% in the lumbar spine and 15.7% in the femoral neck 3 years after surgery. Greater bone mass increases were detected in pre-menopausal women, men, and in symptomatic and younger patients, both in the lumbar spine and femoral neck. Our results support the previous findings of a predominantly symptomatic disease with a presentation profile that could be mainly related to a delayed diagnosis. Nevertheless, genetic and racial backgrounds, and nutritional factors such as calcium and vitamin D deficiency may play a role in the clinical presentation of primary hyperparathyroidism of Brazilian patients.
Resumo:
The present investigation was undertaken to study the effect of β-blockers and exercise training on cardiac structure and function, respectively, as well as overall functional capacity in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CArKO). α2A/α2CArKO and their wild-type controls were studied for 2 months, from 3 to 5 months of age. Mice were randomly assigned to control (N = 45), carvedilol-treated (N = 29) or exercise-trained (N = 33) groups. Eight weeks of carvedilol treatment (38 mg/kg per day by gavage) or exercise training (swimming sessions of 60 min, 5 days/week) were performed. Exercise capacity was estimated using a graded treadmill protocol and HR was measured by tail cuff. Fractional shortening was evaluated by echocardiography. Cardiac structure and gastrocnemius capillary density were evaluated by light microscopy. At 3 months of age, no significant difference in fractional shortening or exercise capacity was observed between wild-type and α2A/α2CArKO mice. At 5 months of age, all α2A/α2CArKO mice displayed exercise intolerance and baseline tachycardia associated with reduced fractional shortening and gastrocnemius capillary rarefaction. In addition, α2A/ α2CArKO mice presented cardiac myocyte hypertrophy and ventricular fibrosis. Exercise training and carvedilol similarly improved fractional shortening in α2A/α2CArKO mice. The effect of exercise training was mainly associated with improved exercise tolerance and increased gastrocnemius capillary density while β-blocker therapy reduced cardiac myocyte dimension and ventricular collagen to wild-type control levels. Taken together, these data provide direct evidence for the respective beneficial effects of exercise training and carvedilol in α2A/α2CArKO mice preventing cardiac dysfunction. The different mechanisms associated with beneficial effects of exercise training and carvedilol suggest future studies associating both therapies.