55 resultados para Nanostructured tantalum carbide. Oxalic precursors. Composite tantalum and copper
Resumo:
Antimony is a common catalyst in the synthesis of polyethylene terephthalate used for food-grade bottles manufacturing. However, antimony residues in final products are transferred to juices, soft drinks or water. The literature reports mentions of toxicity associated to antimony. In this work, a green, fast and direct method to quantify antimony, sulfur, iron and copper, in PET bottles by X-ray fluorescence spectrometry is presented. 2.4 to 11 mg Sb kg-1 were found in 20 samples analyzed. The coupling of the multielemental technique to chemometric treatment provided also the possibility to classify PET samples between bottle-grade PET/recycled PET blends by Fe content.
Resumo:
The construction of a low cost mini sensor containing a bismuth-film electrode (BiFE), as work electrode, a silver electrode as pseudo reference electrode, and copper as counter electrode is proposed. The application of this mini sensor using a low cost electrochemical cell for in loco voltammetric determinations of inorganic and organic analytes is also described.
Resumo:
This work presents a route for processing spent ink-jet cartridges in an experimental course. The disassembly of the cartridges requires several steps and the recognition of their different components is essential to define the best final destination (recycling, co-processing). The plastic strips were chemically processed so as to recover gold and copper. The students recognized the difficulty of processing multicomponent wastes and the importance of the chemical work under the best safety conditions; they also experienced many laboratory techniques and recognized the value of the selective collection and the reverse logistics to reach a viable commercial scale recycling.
Resumo:
Lead and copper concentrations in drinking water increase considerably on going from municipality reservoirs to the households sampled in Ribeirão Preto (SP-Brazil). Flushing of only 3 liters of water reduced metal concentrations by more than 50%. Relatively small changes in water pH rapidly affected corrosion processes in lead pipes, while water hardness appeared to have a long-term effect. This approach aims to encourage University teachers to use its content as a case study in disciplines of Instrumental Analytical Chemistry and consequently increase knowledge about drinking water contamination in locations where no public monitoring of trace metals is in place.
Resumo:
Copper sulfate and sodium hypochlorite are used in footbath solutions for the prevention and treatment of bovine digital diseases; however, data on the residues of such elements in milk are sparse in Brazil. This study evaluated the cost of applying the footbath treatment and the total amount of copper and chlorite residues in the milk of healthy cows after they had passed through these footbath solutions. Two groups of 7 cows each (GI and GII) were studied. In the case of GI, 1% sodium hypochlorite was used and for GII 5% copper sulfate was employed in the footbath. The milk samples were collected before the 7-day footbath treatment period (M0) and 24 h (M1), 48 h (M2), 72 h (M3) and 15 days (M15) after the last footbath. Statistical analysis to compare the different samples within each group was carried out by applying Friedman's test, followed by Dunn's test (p<0.05). It was concluded that the amount of total chlorites and copper in the milk of healthy cattle after routine daily footbaths for a period of 7 days presented some variations. However, the concentrations observed were considered insufficient to represent a risk to human health. The cost of the footbath solutions was found to be reasonable.
Resumo:
As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.
Resumo:
The true spinach (Spinacia oleracea) does not grow well in warm climates and for that reason is not commercialized in Brazil. Instead, a spinach substitute (Tetragonia expansa), originally from New Zealand, is widely used in the country. There is scant information on the mineral profile and none on the soluble mineral fraction of this vegetable. The solubility of a mineral is one of the important factors for its absorption. For this reason, the calcium, magnesium, iron, manganese, copper, zinc, potassium, and sodium soluble fractions in the raw spinach substitute were determined and the effect of blanching times on the solubility of these minerals was investigated. Blanching times of 1, 5, and 15 minutes were employed. The magnesium, manganese, potassium, and sodium soluble fractions increased sizably with shorter blanching time. Longer blanching time (15 minutes) caused large losses of minerals. The soluble mineral fractions can contribute poorly to diet in terms of potassium, magnesium, manganese, and zinc. The spinach substitute cannot be considered a dietary source of calcium, iron and copper due to the insolubility of these minerals in the vegetable, possibly caused by the large oxalate content.
Resumo:
In order to assure that the use of cerrado fruits occur in a sustainable way, studies to investigate their characteristics are extremely relevant. In this context, the present study aims to describe some chemical parameters of pequi fruits picked in three municipalities in southwestern Goiás State (Jataí, Rio Verde, and Serranópolis). In each city, two populations of pequi trees - pequizeiros, denominated areas, were selected. In each area, eight trees were selected for the fruit to be picked. The contents of phosphorus, potassium, calcium, magnesium, nitrogen, zinc, and ether extract were determined in the samples. The results demonstrate differences between the chemical characteristics studied for the fruits picked in different areas, which does not seem to vary in a significant way. Comparing the contents obtained in the present study with those required as human daily supply, further studies are recommended aiming at using the pequi fruit as a complementary alternative source of magnesium, manganese, and copper.
Resumo:
In Brazil, street markets and vegetable distributors discard vegetable leaves and stems, including those of carrot (Dacus carota L.). Seeking to reduce the waste of vegetable parts, this study characterized chemically the leaves of organically grown carrot in three stages of development to determine the best time for their removal and consumption as food. The leaves were dehydrated in an oven at 70 °C for 43 hours and analyzed for chemical composition, antioxidant activity, chlorophyll content, fatty acid composition, and also calcium (Ca), sodium (Na), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu) contents. The analyses indicated 100 days of development as the ideal stage for the removal and consumption of carrot leaves with good antioxidant activity requiring only 63.78 ± 0.5 mg.L-1 methanol leaf extract to inhibit 50% of the concentration of the free radical DPPH (2,2-diphenyl-1picrilidrazil), and total protein and alpha-linolenic acid (18:3 n-3/LNA) contents of 18.23% ± 2.8 and 876.55 ± 20.62 mg.100 g-1 of dry matter, respectively.
Resumo:
Acid lime can be used as fresh fruit or as juice to increase the flavor of drinks. Therefore, it is necessary to analyze organic acid lime nutritional composition in order to evaluate if there are important differences among those conventionally produced. No significant differences in total titrable acidity, pH, ascorbic acid, sucrose, calcium, and zinc were found between the acid lime juice from organic biodynamic crops and conventional crops. However, the organic biodynamic fruits presented higher peel percentage than the conventional ones leading to lower juice yield. On the other hand, fructose, glucose, total soluble solids contents, potassium, manganese, iron, and copper were higher in the conventional samples. These results indicated few nutritional differences between organic and conventional acid lime juices in some constituents. Nevertheless, fruit juice from biodynamic crops could be a good choice since it is free from pesticides and other agents that cause problems to human health maintaining the levels similar to those of important nutritional compounds.