60 resultados para NG-monomethyl-L-arginine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholecystokinin (CCK) influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM) and cerulein (EC50: 58; 95% CI: 18-281 nM) induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG) reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM) in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to determine the effect of arachidonylethanolamide (anandamide, AEA) injected intracerebroventricularly (icv) into the lateral ventricle of the rat brain on submandibular gland (SMG) salivary secretion. Parasympathetic decentralization (PSD) produced by cutting the chorda tympani nerve strongly inhibited methacholine (MC)-induced salivary secretion while sympathetic denervation (SD) produced by removing the superior cervical ganglia reduced it slightly. Also, AEA (50 ng/5 µL, icv) significantly decreased MC-induced salivary secretion in intact rats (MC 1 µg/kg: control (C), 5.3 ± 0.6 vs AEA, 2.7 ± 0.6 mg; MC 3 µg/kg: C, 17.6 ± 1.0 vs AEA, 8.7 ± 0.9 mg; MC 10 µg/kg: C, 37.4 ± 1.2 vs AEA, 22.9 ± 2.6 mg). However, AEA did not alter the significantly reduced salivary secretion in rats with PSD, but decreased the slightly reduced salivary secretion in rats with SD (MC 1 µg/kg: C, 3.8 ± 0.8 vs AEA, 1.4 ± 0.6 mg; MC 3 µg/kg: C, 14.7 ± 2.4 vs AEA, 6.9 ± 1.2 mg; P < 0.05; MC 10 µg/kg: C, 39.5 ± 1.0 vs AEA, 22.3 ± 0.5 mg; P < 0.001). We showed that the inhibitory effect of AEA is mediated by cannabinoid type 1 CB1 receptors and involves GABAergic neurotransmission, since it was blocked by previous injection of the CB1 receptor antagonist AM251 (500 ng/5 µL, icv) or of the GABA A receptor antagonist, bicuculline (25 ng/5 µL, icv). Our results suggest that parasympathetic neurotransmission from the central nervous system to the SMG can be inhibited by endocannabinoid and GABAergic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the role of oxidative damage in pancreatitis-induced hepatic injury. Thirty-five rats were divided into five groups (each of 7 rats): control, cerulein (100 µg/kg body weight), cerulein and pentoxifylline (12 mg/kg body weight), cerulein plus L-NAME (10 mg/kg body weight) and cerulein plus L-arginine (160 mg/kg body weight). The degree of hepatic cell degeneration differed significantly between groups. Mean malondialdehyde levels were 7.00 ± 2.29, 20.89 ± 10.13, 11.52 ± 4.60, 18.69 ± 8.56, and 8.58 ± 3.68 nmol/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Mean catalase activity was 3.20 ± 0.83, 1.09 ± 0.35, 2.05 ± 0.91, 1.70 ± 0.60, and 2.85 ± 0.47 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively, and mean glutathione peroxidase activity was 0.72 ± 0.25, 0.33 ± 0.09, 0.37 ± 0.04, 0.34 ± 0.07 and 0.42 ± 0.1 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Cerulein-induced liver damage was accompanied by a significant increase in tissue malondialdehyde levels (P < 0.05) and a significant decrease in catalase (P < 0.05) and GPx activities (P < 0.05). L-arginine and pentoxifylline, but not L-NAME, protected against this damage. Oxidative injury plays an important role not only in the pathogenesis of AP but also in pancreatitis-induced hepatic damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies on Combretum leprosum, a tree growing in the Northeastern states of Brazil, have shown antinociceptive effects of the ethanol extract of its leaves and bark, but studies examining its constituents are rare. The objective of this study was to evaluate the antinociceptive effect of the hydroalcoholic fraction (HF) of one of its constituents, the flavonoid (-) epicatechin (EPI), administered orally to mice (20-30 g) in models of chemical nociception, and the possible mechanisms involved. Different doses of HF (62.5 to 500 mg/kg) and EPI (12.5 to 50 mg/kg) were evaluated in models of abdominal writhing, glutamate, capsaicin, and formalin in animals pretreated with different antagonists: naloxone, ondansetron, yohimbine, ketanserin, pindolol, atropine, and caffeine in the abdominal writhing test. To determine the role of nitric oxide, the animals were pretreated with L-arginine (600 mg/kg, ip) in the glutamate test. The HF was effective (P < 0.05) in all protocols at different doses and EPI was effective in the abdominal writhing, capsaicin and glutamate tests (P < 0.05) at doses of 25 and 50 mg/kg. However, in the formalin test it was only effective in the second phase at a dose of 25 mg/kg. The antinociceptive effect of HF was inhibited when HF was associated with yohimbine (0.15 mg/kg), ketanserine (0.03 mg/kg), and L-arginine (600 mg/kg), but not with the other antagonists. HF and EPI were effective in models of chemical nociception, with the suggested participation of the adrenergic, serotonergic and nitrergic systems in the antinociceptive effect of HF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relaxant effect of the methyl ester of rosuvastatin was evaluated on aortic rings from male Wistar rats (250-300 g, 6 rats for each experimental group) with and without endothelium precontracted with 1.0 µM phenylephrine. The methyl ester presented a slightly greater potency than rosuvastatin in relaxing aortic rings, with log IC50 values of -6.88 and -6.07 M, respectively. Unlike rosuvastatin, the effect of its methyl ester was endothelium-independent. Pretreatment with 10 µM indomethacin did not inhibit, and pretreatment with 1 mM mevalonate only modestly inhibited the relaxant effect of the methyl ester. Nω-nitro-L-arginine methyl ester (L-NAME, 10 µM), the selective nitric oxide-2 (NO-2) inhibitor 1400 W (10 µM), tetraethylammonium (TEA, 10 mM), and cycloheximide (10 µM) partially inhibited the relaxant effect of the methyl ester on endothelium-denuded aortic rings. However, the combination of TEA plus either L-NAME or cycloheximide completely inhibited the relaxant effect. Inducible NO synthase (NOS-2) was only present in endothelium-denuded aortic rings, as demonstrated by immunoblot with methyl ester-treated rings. In conclusion, whereas rosuvastatin was associated with a relaxant effect dependent on endothelium and hydroxymethylglutaryl coenzyme A reductase in rat aorta, the methyl ester of rosuvastatin exhibited an endothelium-independent and only slightly hydroxymethylglutaryl coenzyme A reductase-dependent relaxant effect. Both NO produced by NOS-2 and K+ channels are involved in the relaxant effect of the methyl ester of rosuvastatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (DMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP8-37) and ADM receptor antagonist (ADM22-52) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl¹, O-me-Tyr²,Arg8]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V1 receptors in the increasing effects of icv ADM on blood pressure and HR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anxiogenic and antinociceptive effects produced by glutamate N-methyl-D-aspartate receptor activation within the dorsal periaqueductal gray (dPAG) matter have been related to nitric oxide (NO) production, since injection of NO synthase (NOS) inhibitors reverses these effects. dPAG corticotropin-releasing factor receptor (CRFr) activation also induces anxiety-like behavior and antinociception, which, in turn, are selectively blocked by local infusion of the CRF type 1 receptor (CRFr1) antagonist, NBI 27914 [5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)aminopyridine]. Here, we determined whether i) the blockade of the dPAG by CRFr1 attenuates the anxiogenic/antinociceptive effects induced by local infusion of the NO donor, NOC-9 [6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine], and ii) the anxiogenic/antinociceptive effects induced by intra-dPAG CRF are prevented by local infusion of Nω-propyl-L-arginine (NPLA), a neuronal NOS inhibitor, in mice. Male Swiss mice (12 weeks old, 25-35 g, N = 8-14/group) were stereotaxically implanted with a 7-mm cannula aimed at the dPAG. Intra-dPAG NOC-9 (75 nmol) produced defensive-like behavior (jumping and running) and antinociception (assessed by the formalin test). Both effects were reversed by prior local infusion of NBI 27914 (2 nmol). Conversely, intra-dPAG NPLA (0.4 nmol) did not modify the anxiogenic/antinociceptive effects of CRF (150 pmol). These results suggest that CRFr1 plays an important role in the defensive behavior and antinociception produced by NO within the dPAG. In contrast, the anxiogenic and antinociceptive effects produced by intra-dPAG CRF are not related to NO synthesis in this limbic midbrain structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6). Exposure to methylmercury (0-100 μM) was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h) also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a greenhouse pot experiment with kohlrabi, variety Luna, we explored the joint effect of N (0.6 g N per pot = 6 kg of soil) and S in the soil (25-35-45 mg kg-1 of S) on yields, on N, S and NO3- content in tubers and leaves, and on alterations in the amino acids concentration in the tubers. S fertilisation had no effect on tuber yields. The ranges of N content in tubers and leaves were narrow (between 1.42-1.48 % N and 1.21-1.35 % N, respectively) and the effect of S fertilisation was insignificant. S concentration in the tubers ranged between 0.59 and 0.64 % S. S fertilisation had a more pronounced effect on the S concentration in leaf tissues where it increased from 0.50 to 0.58 or to 0.76 % S under the applied dose. The NO3- content was higher in tubers than in leaves. Increasing the S level in the soil significantly reduced NO3- concentrations in the tubers by 42.2-53.6 % and in the leaves by 8.8-21.7 %. Increasing the S content in the soil reduced the concentration of cysteine + methionine by 16-28 %. The values of valine, tyrosine, aspartic acid and serine were constant. In the S0, S1, and S2 treatments the levels of threonine, isoleucine, leucine, arginine, the sum of essential amino acids and alanine decreased from 37 to 9 %. The histidine concentration increased with increasing S fertilisation. S fertilisation of kohlrabi can be recommended to stabilize the yield and reduce the undesirable NO3- contained in the parts used for consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to determine the dietary lysine (DL) and dietary arginine (DA) requirements of dourado (Salminus brasiliensis), through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4). In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g) were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g) were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ginkgo biloba extract EGb 761 has been reported to have therapeutic effects which have been attributed to anti-oxidant and free radical-scavenging activities, including a direct action on nitric oxide production. L G-nitro-arginine (L-NOARG), a nitric oxide synthase inhibitor, and haloperidol, a drug that blocks dopamine receptors, are both known to induce catalepsy in rodents. Nitric oxide has been shown to influence dopaminergic transmission in the striatum. The purpose of the present study was to evaluate the effect of the extract obtained from leaves of Ginkgo biloba tree EGb 761 on catalepsy induced by haloperidol or by L-NOARG. Albino Swiss mice (35-45 g, N = 8-12) received by gavage a single or repeated oral dose (twice a day for 4 days) of EGb 761 followed by ip injection of haloperidol or L-NOARG. After the treatments, the animals were submitted to behavioral evaluation using the catalepsy test. Acute treatment with 80 mg/kg EGb did not modify the catalepsy induced by L-NOARG but, the dose of 40 mg/kg significantly enhanced haloperidol-induced catalepsy measured at the 10th min of the test. After repeated treatment with 80 mg/kg EGb 761, a significant increase in the cataleptic effect produced by both haloperidol and L-NOARG was observed. These data show that repeated EGb 761 administration increases the effects of drugs that modify motor behavior in mice. Since the catalepsy test has predictive value regarding extrapyramidal effects, the possibility of pharmacological interactions between haloperidol and Ginkgo biloba extracts should be further investigated in clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myrtaceae is a plant family widely used in folk medicine and Syzygium and Eugenia are among the most important genera. We investigated the anti-allergic properties of an aqueous leaf extract of Syzygium cumini (L.) Skeels (SC). HPLC analysis revealed that hydrolyzable tannins and flavonoids are the major components of the extract. Oral administration of SC (25-100 mg/kg) in Swiss mice (20-25 g; N = 7/group) inhibited paw edema induced by compound 48/80 (50% inhibition, 100 mg/kg; P <= 0.05) and, to a lesser extent, the allergic paw edema (23% inhibition, 100 mg/kg; P <= 0.05). SC treatment also inhibited the edema induced by histamine (58% inhibition; P <= 0.05) and 5-HT (52% inhibition; P <= 0.05) but had no effect on platelet-aggregating factor-induced paw edema. SC prevented mast cell degranulation and the consequent histamine release in Wistar rat (180-200 g; N = 7/group) peritoneal mast cells (50% inhibition, 1 µg/mL; P <= 0.05) induced by compound 48/80. Pre-treatment of BALB/c mice (18-20 g; N = 7/group) with 100 mg/kg of the extract significantly inhibited eosinophil accumulation in allergic pleurisy (from 7.662 ± 1.524 to 1.89 ± 0.336 x 10(6)/cavity; P <= 0.001). This effect was related to the inhibition of IL-5 (from 70.9 ± 25.2 to 12.05 ± 7.165 pg/mL) and CCL11/eotaxin levels (from 60.4 ± 8.54 to 32.8 ± 8.4 ng/mL) in pleural lavage fluid, using ELISA. These findings demonstrate an anti-allergic effect of SC, and indicate that its anti-edematogenic effect is due to the inhibition of mast cell degranulation and of histamine and serotonin effects, whereas the inhibition of eosinophil accumulation in the allergic pleurisy model is probably due to an impairment of CCL11/eotaxin and IL-5 production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.