222 resultados para Modelos de dados de contagem
Resumo:
Os objetivos deste trabalho foram comparar modelos matemáticos e identificar, entre variáveis morfológicas, a de melhor ajuste na previsão de perdas de produtividade em arroz irrigado por interferência da cultivar EEA 406, simuladora de arroz-vermelho. Foram realizados quatro experimentos, sendo um no campo e os demais em casa de vegetação. Três cultivares de arroz, BRS-38 Ligeirinho, IRGA 417 e BR-IRGA 409, foram estudadas no campo, com espaçamento entrelinhas de 15 e 25 cm, além de populações da cultivar competidora (dez níveis). Em casa de vegetação, realizaram-se experimentos em monocultivos e em série de substituição. A análise dos dados foi realizada com aplicação de modelos lineares e não lineares de regressão. O melhor ajuste dos dados de perdas de produtividade em arroz foi encontrado com o modelo de dois parâmetros. Área foliar e cobertura do solo estimaram melhor as perdas de produtividade de grãos do que a massa seca da cultivar simuladora. Os modelos testados indicam que a redução do espaçamento entrelinhas aumenta a habilidade competitiva das cultivares de arroz em relação à cultivar concorrente.
Resumo:
Modelos matemáticos não-lineares utilizados na análise de desempenho de sistemas de irrigação foram comparados visando a indicar o que se ajusta melhor aos dados observados em perfis de distribuição da água aplicada na irrigação. Foram considerados quatro modelos de probabilidade (Normal, Log-normal, Gama e Beta) e dois modelos potenciais (modelos Silva e Karmeli), aplicados a 91 casos de avaliação de desempenho da irrigação. A comparação entre as curvas de freqüência acumulada da soma de quadrados dos erros, obtida do ajuste de cada modelo aos dados, revelou que o modelo Silva é estatisticamente o melhor entre os modelos testados.
Resumo:
O objetivo deste trabalho foi selecionar as variáveis de manejo do camarão marinho Litopenaeus vannamei que mais influenciaram nas variáveis-respostas ao cultivo (produção, produtividade, peso final e taxa de sobrevivência), em modelos matemáticos. O banco de dados foi composto por 83 cultivos, realizados no período de 2003 a 2005, obtidos de uma fazenda comercial localizada no litoral sul de Pernambuco. Para estimar os parâmetros dos modelos, utilizou-se a técnica dos mínimos quadrados. A seleção das variáveis foi realizada com o processo "backward elimination" associado ao método de transformação de Box e Cox. A adequação das equações e os pressupostos de normalidade e homocedasticidade, para os erros, foram analisadas com base na análise de variância e análise de resíduo. É possível relacionar essas variáveis e estabelecer predições com as equações.
Resumo:
O objetivo deste trabalho foi avaliar e comparar os modelos do Filocrono e de Wang e Engel para estimativa do aparecimento de folhas em mudas de Eucalyptus grandis e E. saligna. Foram instalados dois experimentos em Santa Maria em 2005 e 2006, um, em campo, com nove épocas de semeadura, e o outro, em casa, de vegetação com duas épocas de semeadura. Os modelos usados foram o do Filocrono, que assume uma relação linear entre taxa de aparecimento de folhas e temperatura, e o de Wang e Engel, que assume uma relação não-linear entre taxa de aparecimento de folhas e temperatura. As quatro primeiras épocas de semeadura em campo foram usadas para estimar os coeficientes dos modelos utilizados. As épocas de semeadura restantes do experimento em campo e as duas épocas de semeadura, em casa de vegetação, foram utilizadas como dados independentes para avaliar os modelos. O modelo de Wang e Engel proporcionou estimativa mais precisa do número de folhas, com valor da raiz do quadrado médio do erro de 2,7 e 3,7 folhas, comparado com o modelo do Filocrono com 7,1 e 10 folhas para E. grandis e E. saligna, respectivamente.
Resumo:
O objetivo deste trabalho foi realizar uma análise bayesiana de modelos auto-regressivos de ordem p, AR(p), para dados em painel referentes às diferenças esperadas nas progênies (DEP) de touros da raça Nelore publicados de 2000 a 2006. Neste trabalho, adotou-se o modelo AR(2), indicado pela análise prévia da função de autocorrelação parcial. As comparações entre as prioris, realizadas por meio do Fator de Bayes e do Pseudo-Fator de Bayes, indicaram superioridade da priori independente t-Student multivariada - Gama inversa em relação à priori hierárquica Normal multivariada - Gama inversa e a priori de Jeffreys. Os resultados indicam a importância de se dividir os animais em grupos homogêneos de acordo com a acurácia. Constatou-se também que, em média, a eficiência de previsão dos valores de DEP para um ano futuro foi próxima de 80%.
Análise genética de escores de avaliação visual de bovinos com modelos bayesianos de limiar e linear
Resumo:
O objetivo deste trabalho foi comparar as estimativas de parâmetros genéticos obtidas em análises bayesianas uni-característica e bi-característica, em modelo animal linear e de limiar, considerando-se as características categóricas morfológicas de bovinos da raça Nelore. Os dados de musculosidade, estrutura física e conformação foram obtidos entre 2000 e 2005, em 3.864 animais de 13 fazendas participantes do Programa Nelore Brasil. Foram realizadas análises bayesianas uni e bi-características, em modelos de limiar e linear. De modo geral, os modelos de limiar e linear foram eficientes na estimação dos parâmetros genéticos para escores visuais em análises bayesianas uni-características. Nas análises bi-características, observou-se que: com utilização de dados contínuos e categóricos, o modelo de limiar proporcionou estimativas de correlação genética de maior magnitude do que aquelas do modelo linear; e com o uso de dados categóricos, as estimativas de herdabilidade foram semelhantes. A vantagem do modelo linear foi o menor tempo gasto no processamento das análises. Na avaliação genética de animais para escores visuais, o uso do modelo de limiar ou linear não influenciou a classificação dos animais, quanto aos valores genéticos preditos, o que indica que ambos os modelos podem ser utilizados em programas de melhoramento genético.
Resumo:
O objetivo deste trabalho foi desenvolver árvores de decisão como modelos de alerta da ferrugem-do-cafeeiro em lavouras de café (Coffea arabica L.) com alta carga pendente de frutos. Dados de incidência mensal da doença no campo coletados durante oito anos foram transformados em valores binários considerando limites de 5 e 10 pontos percentuais na taxa de infecção. Foi gerado um modelo para cada taxa de infecção binária a partir de dados meteorológicos e do espaçamento entre plantas. O alerta é indicado quando a taxa de infecção, prevista para o prazo de um mês, atingir ou ultrapassar o respectivo limite. A acurácia do modelo para o limite de 5 pontos percentuais foi de 81%, por validação cruzada, chegando até 89% segundo estimativa otimista. Esse modelo apresentou bons resultados para outras medidas de avaliação importantes, como sensitividade (80%), especificidade (83%) e confiabilidades positiva (79%) e negativa (84%). O modelo para o limite de 10 pontos percentuais teve acurácia de 79%, e não apresentou o mesmo equilíbrio entre as demais medidas. Em conjunto, esses modelos podem auxiliar na tomada de decisão referente ao controle da ferrugem-do-cafeeiro no campo. A indução de árvores de decisão é alternativa viável às técnicas convencionais de modelagem e facilita a compreensão dos modelos.
Resumo:
O objetivo deste trabalho foi avaliar a conveniência de definir o número de componentes multiplicativos dos modelos de efeitos principais aditivos com interação multiplicativa (AMMI) em experimentos de interações genótipo x ambiente de algodão com dados imputados ou desbalanceados. Um estudo de simulação foi realizado com base em uma matriz de dados reais de produtividade de algodão em caroço, obtidos em ensaios de interação genótipo x ambiente, conduzidos com 15 cultivares em 27 locais no Brasil. A simulação foi feita com retiradas aleatórias de 10, 20 e 30% dos dados. O número ótimo de componentes multiplicativos para o modelo AMMI foi determinado usando o teste de Cornelius e o teste de razão de verossimilhança sobre as matrizes completadas por imputação. Para testar as hipóteses, quando a análise é feita a partir de médias e não são disponibilizadas as repetições, foi proposta uma correção com base nas observações ausentes no teste de Cornelius. Para a imputação de dados, foram considerados métodos usando submodelos robustos, mínimos quadrados alternados e imputação múltipla. Na análise de experimentos desbalanceados, é recomendável escolher o número de componentes multiplicativos do modelo AMMI somente a partir da informação observada e fazer a estimação clássica dos parâmetros com base nas matrizes completadas por imputação.
Resumo:
O objetivo deste trabalho foi avaliar o desempenho de modelos isotrópicos de estimativa do total de radiação incidente em superfícies inclinadas e propor estimativas com base nas correlações entre os índices de claridade horizontais e inclinados, em diferentes condições de cobertura de céu, em Botucatu, SP. Foram avaliadas superfícies com inclinação de 12,85º, 22,85º e 32,85º, pelos modelos isotrópicos propostos por Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, a teoria Circunsolar, e a correlação entre os índices de claridade horizontais e inclinados, para diferentes condições de cobertura de céu. O banco de dados de radiação global utilizado corresponde ao período de 1998 a 2007, com intervalos de 4/1998 a 8/2001 para a inclinação de 22,85º, de 9/2001 a 2/2003 para 12,85º e de 1/2004 a 12/2007 para 32,85º. O desempenho dos modelos foi avaliado pelos indicadores estatísticos erro absoluto médio, raiz quadrada do quadrado médio do erro e índice "d" de Wilmott. Os modelos de Liu & Jordan, Koronakis e de Revfeim apresentaram os melhores desempenhos em dias nublados, em todas as inclinações. As coberturas de céu parcialmente difuso e parcialmente aberto, nos maiores ângulos de inclinação, apresentaram as maiores dispersões entre valores estimados e medidos, independentemente do modelo. As equações estatísticas apresentaram bons resultados em aplicações com agrupamentos de dados mensais.
Resumo:
O objetivo deste trabalho foi evidenciar diferenças entre modelos de regressão, obtidos pelo método de Eberhart & Russell, na análise de adaptabilidade e estabilidade de comportamento de genótipos, e propor uma metodologia de agrupamento dos modelos similares. O teste para verificar a identidade de modelos foi empregado em dados de avaliação de 14 genótipos de milho em oito ambientes. Uma vez rejeitada a hipótese de igualdade dos modelos de regressão, realizou-se o agrupamento desses modelos com base no cálculo do quadrado médio da redução (QMRed) entre pares dos modelos de regressão. Após a obtenção desses valores, foi selecionado o de menor magnitude e verificada sua significância pelo teste F. NA hipótese de esse QMRed não ser significativo, o par de modelos relacionado a ele forma o grupo inicial. O método para verificar a identidade de modelos pode ser usado com sucesso no agrupamento de equações de regressão linear obtidas pelo método de Eberhart & Russell com o objetivo de estudar a adaptabilidade e a estabilidade de genótipos. O método de agrupamento de modelos similares permite formar grupos de genótipos com o mesmo comportamento estatístico
Resumo:
O objetivo deste trabalho foi determinar a melhor alternativa, entre os métodos de agrupamento hierárquico (Ward) e de otimização (Tocher), para a formação de grupos homogêneos de séries de expressão gênica, e realizar previsões quanto à expressão gênica dessas séries, a partir de pequeno número de observações temporais. Os dados utilizados referem-se à expressão de genes que atuam sobre o ciclo celular de Saccharomyces cerevisiae e corresponderam a 114 séries de expressão gênica, cada uma com dez valores de "fold-change" (medida da expressão gênica) ao longo do tempo (0, 15, 30, 45, 60, 75, 90, 105, 120 e 135 min). As estimativas dos parâmetros dos modelos autorregressivos AR(p) foram previamente ajustadas a séries individuais (de cada gene) de dados "microarray time series" e utilizadas, como variáveis, no processo de agrupamento. As previsões da expressão gênica foram feitas dentro de cada grupo formado, a partir dos ajustes no modelo AR(p) para dados em painel. O método de Ward foi o mais apropriado para a formação de grupos de genes com séries homogêneas. Uma vez obtidos esses grupos, é possível ajustar o modelo AR(2) para dados em painel e predizer a expressão gênica em um tempo futuro (135 min), a partir de um pequeno número de observações temporais (os outros nove valores de "fold-change").
Resumo:
O objetivo deste trabalho foi comparar formas de análise de medidas repetidas para o melhoramento da produção de frutos de pinha (Annona squamosa). Vinte progênies de meias-irmãs foram avaliadas por três anos (2003, 2004 e 2005) em delineamento de blocos ao acaso, com cinco repetições, com cada parcela constituída de quatro plantas. A característica avaliada foi o número de frutos por indivíduo. Os modelos de simetria composta, de simetria composta com variâncias heterogêneas, autorregressivo com variâncias heterogêneas, e antedependência estruturada, foram analisados com o programa ASReml. A estimação dos componentes de variância e a predição dos valores genéticos foram feitas com o procedimento REML/BLUP. A comparação dos modelos foi realizada pelo teste de razão de verossimilhança e pelo critério de Akaike. O modelo antedependência estruturada, para os fatores progênie e parcela, e o modelo multivariado, para o fator resíduo, são as melhores abordagens para a análise dos dados, pois propiciam eficiência e parcimônia em relação ao modelo multivariado completo. Com o modelo antedependência estruturada, é possível a identificação de famílias superiores, em cada colheita, e também de famílias com maior número total de frutos.
Resumo:
O objetivo deste trabalho foi avaliar cenários de níveis freáticos extremos, em bacia hidrográfica, por meio de métodos de análise espacial de dados geográficos. Avaliou-se a dinâmica espaço‑temporal dos recursos hídricos subterrâneos em área de afloramento do Sistema Aquífero Guarani. As alturas do lençol freático foram estimadas por meio do monitoramento de níveis em 23 piezômetros e da modelagem das séries temporais disponíveis de abril de 2004 a abril de 2011. Para a geração de cenários espaciais, foram utilizadas técnicas geoestatísticas que incorporaram informações auxiliares relativas a padrões geomorfológicos da bacia, por meio de modelo digital de terreno. Esse procedimento melhorou as estimativas, em razão da alta correlação entre altura do lençol e elevação, e agregou sentido físico às predições. Os cenários apresentaram diferenças quanto aos níveis considerados extremos - muito profundos ou muito superficiais - e podem subsidiar o planejamento, o uso eficiente da água e a gestão sustentável dos recursos hídricos na bacia.
Resumo:
O objetivo deste trabalho foi avaliar modelos digitais de elevação (MDE), obtidos por diferentes fontes de dados, e selecionar um deles para derivar variáveis morfométricas utilizadas em mapeamento digital de solos. O trabalho foi realizado na Bacia Guapi‑Macacu, RJ. Os dados primários utilizados nos modelos gerados por interpolação (MDE‑carta e MDE‑híbrido) foram: curvas de nível, drenagem, pontos cotados e dados de sensor remoto transformados em pontos. Utilizaram-se, na comparação, modelos obtidos por sensor remoto e por aerorrestituição (MDE SRTM e MDE IBGE). Todos os modelos apresentaram resolução espacial de 30 m. A avaliação dos modelos de elevação foi baseada na análise de: atributos derivados (declividade, aspecto e curvatura); depressões espúrias; comparação entre feições derivadas a partir dos modelos e as originais, oriundas de cartas planialtimétricas; e análise das bacias de contribuição derivadas. O modelo digital de elevação híbrido apresenta qualidade superior à dos demais modelos.
Resumo:
O objetivo deste trabalho foi avaliar eficiência de modelos de regressão aleatória (MRA) para detectar locus de características quantitativas (QTL) para características de crescimento, em suínos. Utilizou-se uma população divergente F2 Piau x Comercial. A eficiência da metodologia proposta na detecção de QTL foi comparada à da metodologia tradicional de regressão por intervalo de mapeamento. Para tanto, utilizaram-se MRA com efeitos aleatórios poligênicos, de ambiente permanente e de QTL, tendo-se utilizado o enfoque de matriz de covariância "identical‑by‑descent" associada aos efeitos de QTL. Testou-se a significância dos efeitos de QTL mediante a razão de verossimilhanças, tendo-se considerado o modelo como completo quando houve efeito de QTL, ou nulo, quando não. A comparação entre os modelos foi feita nas posições dos marcadores (seis marcadores microssatélites) e nas intermediárias, entre os marcadores. O MRA detectou QTL significativo na posição 65 cM do cromossomo 7 e, portanto, foi mais eficiente que a metodologia tradicional, que não detectou QTL significativo em nenhum dos fenótipos avaliados. A metodologia proposta possibilitou a detecção de QTL com efeito sobre toda a trajetória de crescimento, dentro da amplitude de idade considerada (do nascimento aos 150 dias).