72 resultados para Modeling cycle
Resumo:
The life cycle of Clerada apicicornis was determined under laboratory conditions. Mean development times in days were: egg 27.2, nymph I 12.5, nymph II 12, nymph III 13.4, nymph IV 16.4, nymph V 26. The life expectancy of adults ranged from 117 to 317 days (mean 196 days). Based on a cohort of 29 females of C. apicicornis, a horizontal life table was constructed. The following predictive parameters were obtained: net rate of reproduction (Ro = 48.31), intrinsic rate of population increase (r m = 0.153), generation time (Tc = 28.20 weeks), and finite rate of population increment (lambda = 1.16). The reproductive value (Vx) for each age class of the cohort females was calculated. The following observed parameters were calculated after mortality in each stage: net rate of reproduction (R'o=13.4), intrinsic rate of population increase (r c' =0.09 ), and finite rate of population increment (lambda' =1.1). The generation time (Tc' =27.4) was estimated using the methods of Laughlin and Bengstron. A vertical life table was elaborated and mortality was described for one generation of the cohort.
Resumo:
Lutzomyia evandroi Costa Lima and Antunes, 1936 is found in Rio Grande do Norte, northeastern Brazil, in areas of visceral and mucocutaneous leishmaniasis and follows the same geographic distribution of L. longipalpis. The biological cycle, oviposition, morphological and behavioral characteristics of the species were studied under experimental conditions. The average number of eggs per wild caught female varied from 21 to 50 eggs along the year, with a peak occurring between January and March and another in August, with oviposition lasting for 4 to 12 days. The mean larval phase was 24 days. Ovipositing rates were influenced by rainfall and temperature indexes, with an increase of eggs per oviposition at the beginning and at the end of the rainy season, and a decrease at the peak of the rainy season.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
Fascioliasis is a parasitic disease of domestic ruminants that occurs worldwide. The lymnaeid intermediate hosts of Fasciola hepatica include Lymnaea columella, which is widely distributed in Brazil. A colony of L. columella from Belo Horizonte, MG, was reared in our laboratory to be used in studies of the F. hepatica life cycle, the intermediate host-parasite relationship and development of an anti-helminthic vaccine. In the first experiment 1,180 snails were exposed to miracidia of F. hepatica eggs removed from the biliary tracts of cattle from the State of Rio Grande do Sul. In the second and third experiments the snails were exposed to miracidia that had emerged from F. hepatica eggs from Uruguay, maintained in rabbits. The rates of infection in the first, second and third experiments were 0, 42.1 and 0% respectively. Over 15,806 metacercariae were obtained and stored at 4ºC. Four rabbits weighing 1.5 kg each were infected with 32-44 metacercariae and two with 200. Three rabbits begin to eliminate eggs of the parasite in the feces from 84 days after infection onwards. The biological cycle of F. hepatica in L. columella and the rabbit was completed within 124 days.
Resumo:
Dengue fever is currently the most important arthropod-borne viral disease in Brazil. Mathematical modeling of disease dynamics is a very useful tool for the evaluation of control measures. To be used in decision-making, however, a mathematical model must be carefully parameterized and validated with epidemiological and entomological data. In this work, we developed a simple dengue model to answer three questions: (i) which parameters are worth pursuing in the field in order to develop a dengue transmission model for Brazilian cities; (ii) how vector density spatial heterogeneity influences control efforts; (iii) with a degree of uncertainty, what is the invasion potential of dengue virus type 4 (DEN-4) in Rio de Janeiro city. Our model consists of an expression for the basic reproductive number (R0) that incorporates vector density spatial heterogeneity. To deal with the uncertainty regarding parameter values, we parameterized the model using a priori probability density functions covering a range of plausible values for each parameter. Using the Latin Hypercube Sampling procedure, values for the parameters were generated. We conclude that, even in the presence of vector spatial heterogeneity, the two most important entomological parameters to be estimated in the field are the mortality rate and the extrinsic incubation period. The spatial heterogeneity of the vector population increases the risk of epidemics and makes the control strategies more complex. At last, we conclude that Rio de Janeiro is at risk of a DEN-4 invasion. Finally, we stress the point that epidemiologists, mathematicians, and entomologists need to interact more to find better approaches to the measuring and interpretation of the transmission dynamics of arthropod-borne diseases.
Resumo:
The increase of malaria transmission in the Pacific Coast of Colombia during the occurrence of El Niño warm event has been found not to be linked to increases in the density of the vector Anopheles albimanus, but to other temperature-sensitive variables such as longevity, duration of the gonotrophic cycle or the sporogonic period of Plasmodium. The present study estimated the effects of temperature on duration of the gonotrophic cycle and on maturation of the ovaries of An. albimanus. Blood fed adult mosquitoes were exposed to temperatures of 24, 27, and 30°C, held individually in oviposition cages and assessed at 12 h intervals. At 24, 27, and 30°C the mean development time of the oocytes was 91.2 h (95% C.I.: 86.5-96), 66.2 h (61.5-70.8), and 73.1 h (64-82.3), respectively. The mean duration of the gonotrophic cycle for these three temperatures was 88.4 h (81.88-94.9), 75 h (71.4-78.7), and 69.1 h (64.6-73.6) respectively. These findings indicate that both parameters in An. albimanus are reduced when temperatures rose from 24 to 30°C, in a nonlinear manner. According to these results the increase in malaria transmission during El Niño in Colombia could be associated with a shortening of the gonotrophic cycle in malaria vectors, which could enhance the frequency of man-vector contact, affecting the incidence of the disease.
Resumo:
The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.
Resumo:
Rhodnius ecuadoriensis is the second most important vector of Chagas Disease (CD) in Ecuador. The objective of this study was to describe (and compare) the life cycle, the feeding and defecation patterns under laboratory conditions of two populations of this specie [from the provinces of Manabí (Coastal region) and Loja (Andean region)]. Egg-to-adult (n = 57) development took an average of 189.9 ± 20 (Manabí) and 181.3 ± 6.4 days (Loja). Mortality rates were high among Lojan nymphs. Pre-feeding time (from contact with host to feeding initiation) ranged from 4 min 42 s [nymph I (NI)] to 8 min 30 s (male); feeding time ranged from 14 min 45 s (NI)-28 min 25 s (male) (Manabí) and from 15 min 25 s (NI)-28 min 57 s (nymph V) (Loja). The amount of blood ingested increased significantly with instar and was larger for Manabí specimens (p < 0.001). Defecation while feeding was observed in Manabí specimens from stage nymph III and in Lojan bugs from stage nymph IV. There was a gradual, age-related increase in the frequency of this behaviour in both populations. Our results suggest that R. ecuadoriensis has the bionomic traits of an efficient vector of Trypanosoma cruzi. Together with previous data on the capacity of this species to infest rural households, these results indicate that control of synanthropic R. ecuadoriensis populations in the coastal and Andean regions may have a significant impact for CD control in Ecuador and Northern Peru.
Resumo:
First recognised as "schizonts" of Trypanosoma cruzi, Pneumocystis organisms are now considered as part of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fungi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few exceptions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further evidence for the existence of conjugation and meiosis in Pneumocystisorganisms. Dynamic follow-up of stage-to-stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of the still hypothetical Pneumocystislife cycle. Although difficult to achieve, stage purification seems a reasonable way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the historical milestones leading to the current knowledge available on the Pneumocystis life cycle.
Resumo:
The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.
Resumo:
A cohort initiated with 121 eggs, yielding 105 first instar nymphs (eclosion rate: 86.78%), allowed us to observe the entire life cycle of Triatoma ryckmani under laboratory conditions (24ºC and 62% relative humidity), by feeding them on anesthetized hamsters. It was possible to obtain 62 adults and the cycle from egg to adult took a mean of 359.69 days with a range of 176-529 days (mortality rate of nymphs: 40.95%). Mean life span of adults was of 81 days for females and 148 days for males. The developmental periods of 4th and 5th nymphs were longer than those of the other instars. This suggests that young siblings have a better chance of taking a hemolymph meal from older ones, in order to survive during fasting periods during prolonged absences of vertebrate hosts from natural ecotopes. The stomach contents of 37 insects showed blood from rodents (15 cases), lizards (7 cases), birds (6 cases) and insect hemolymph (7 cases). Out of 10 insects fed by xenodiagnosis on a Trypanosoma cruzi infected mouse, all but one became infected with the parasite.
Resumo:
An account of host plant selection, larval development and behaviour, and behaviour of adult Phoebemima ensifera. Illustrations of the host plant, plant parts, larva, pupa, and adult are provided.
Resumo:
Life cycle of Tenuipalpus heveae Baker (Acari, Tenuipalpidae) on leaflets from three rubber tree clones. The biological cycle of Tenuipalpus heveae Baker, 1945 (Tenuipalpidae), a potential rubber tree pest mite, was studied by the observation of individuals reared on leaflets of the clones GT 1, PB 235 and RRIM 600, in controlled environmental conditions. Three daily observations were done of 60 eggs on leaflets from each clone in order to verify the development of immature stages and the female oviposition. The fertility life table was constructed based in the collected data. Mites reared on PB 235 had faster rate of development, requiring less time in days, to double its population in number (TD), and had the highest values for egg production, female longevity, net reproductive rate (Ro), intrinsic rate of natural increase (r m) and finite rate of increase (λ). Lower reproductive values and the longest time necessary to reach adult stage were recorded for the mites on GT 1. In all studied clones, the deutonymphal phase had the highest viability, while the larval phase had the lowest, highlighted by the survivorship curve that indicated high mortality during this life stage. The clone PB 235 allowed the most suitable conditions for the development of T. heveae, followed by RRIM 600, while GT 1 was the less suitable substratum to rear this mite species.
Resumo:
Colony cycle of the social wasp Mischocyttarus consimilis Zikán (Hymenoptera, Vespidae). This study describes some aspects of the colony cycle of the Neotropical social wasp Mischocyttarus consimilis, from data obtained under field conditions. Our results showed that the colony cycle in M. consimilis is annual and asynchronous in relation to the months of the year. The colonies remained active for approximately eight months. Most of the abandonments were associated with natural causes, and were most frequent in the pre-emergence stage. The nests were constructed preferentially in man-made structures, especially in sites protected from direct sunlight and rain. Colony foundation was either by haplometrosis or pleometrosis, being the first form predominant.
Resumo:
Losses of productivity of flooded rice in the State of Rio Grande do Sul, Brazil, may occur in the Coastal Plains and in the Southern region due to the use of saline water from coastal rivers, ponds and the Laguna dos Patos lagoon, and the sensibility of the plants are variable according to its stage of development. The purpose of this research was to evaluate the production of rice grains and its components, spikelet sterility and the phenological development of rice at different levels of salinity in different periods of its cycle. The experiment was conducted in a greenhouse, in pots filled with 11 dm³ of an Albaqualf. The levels of salinity were 0.3 (control), 0.75, 1.5, 3.0 and 4.5 dS m-1 kept in the water layer by adding a salt solution of sodium chloride, except for the control, in different periods of rice development: tillering initiation to panicle initiation; tillering initiation to full flowering; tillering initiation to physiological maturity; panicle initiation to full flowering; panicle initiation to physiological maturity and full flowering to physiological maturity. The number of panicles per pot, the number of spikelets per panicle, the 1,000-kernel weight, the spikelet sterility, the grain yield and phenology were evaluated. All characteristics were negatively affected, in a quadratic manner, with increased salinity in all periods of rice development. Among the yield components evaluated, the one most closely related to grain yields of rice was the spikelet sterility.