156 resultados para Minimal Inhibitory Concentration (MIC)
Resumo:
The aim of the current study was to describe the occurrence of the blaOXA-23 gene and the ISAba1 element in imipenem-susceptible Acinetobacter baumannii strains. By performing the polymerase chain reaction mapping using combinations of ISAba1 forward primers and the blaOXA-23-like gene reverse primers, we demonstrated that the ISAba1 element did not occur upstream of the blaOXA-23 gene in five of 31 isolates, which explained the lack of resistance to imipenem despite the presence of the blaOXA-23 gene. All of the blaOXA-23-positive isolates were susceptible to imipenem and meropenem with minimal inhibitory concentration < 4 µg/mL. Pulsed-field gel electrophoresis analysis revealed four genotypes among the five blaOXA-23-positive isolates. The current report of the blaOXA-23 gene in imipenem-susceptible isolates provided evidence that this gene may be silently spread in a hospital environment and highlighted the threat of undetected reservoirs of carbapenemase genes.
Resumo:
We assessed fluconazole susceptibility in 52 Candida tropicalis clinical strains using seven antifungal susceptibility methods, including broth microdilution (BMD) [standard M27 A3 (with neutral and acid pH), ATB Fungus 3, Vitek 2 system and flow cytometric analysis] and agar-based methods (disk diffusion and E-test). Trailing growth, detection of cell-associated secreted aspartic proteases (Saps) and morphological and ultrastructural traits of these clinical strains were also examined. The ranges of fluconazole 24 h-minimum inhibitory concentration (MIC) values were similar among all methods. The essential agreement among the methods used for MIC determinations was excellent and all methods categorised all strains as susceptible, except for one strain that showed a minor error. The presence of the trailing effect was assessed by six methods. Trailing positivity was observed for 86.5-100% of the strains. The exception was the BMD-Ac method where trailing growth was not observed. Morphological and ultrastructural alterations were detected in C. tropicalis trailing cells, including mitochondrial swelling and cell walls with irregular shapes. We tested the production of Saps in 13 C. tropicalis strains expressing trailing growth through flow cytometry. Our results showed that all of the C. tropicalis strains up-regulated surface Sap expression after 24 h or 48 h of exposure to fluconazole, which was not observed in untreated yeast strains. We concluded that C. tropicalis strains expressing trailing growth presented some particular features on both biological and ultrastructural levels.
Resumo:
Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis. Central nervous system infection is the most common clinical presentation followed by pulmonary, skin and eye manifestations. Cryptococcosis is primarily treated with amphotericin B (AMB), fluconazole (FLC) and itraconazole (ITC). In the present work, we evaluated the in vitro effect of terbinafine (TRB), an antifungal not commonly used to treat cryptococcosis. We specifically examined the effects of TRB, either alone or in conjunction with AMB, FLC and ITC, on clinical C. neoformans isolates, including some isolates resistant to AMB and ITC. Broth microdilution assays showed that TRB was the most effective drug in vitro. Antifungal combinations demonstrated synergism of TRB with AMB, FLC and ITC. The drug concentrations used for the combination formulations were as much as 32 and 16-fold lower than the minimum inhibitory concentration (MIC) values of FLC and AMB alone, respectively. In addition, calcofluor white staining revealed the presence of true septa in hyphae structures that were generated after drug treatment. Ultrastructural analyses demonstrated several alterations in response to drug treatment, such as cell wall alterations, plasma membrane detachment, presence of several cytoplasmic vacuoles and mitochondrial swelling. Therefore, we believe that the use of TRB alone or in combination with AMB and azoles should be explored as an alternative treatment for cryptococcosis patients who do not respond to standard therapies.
Resumo:
We evaluated the in vitro anti-Mycobacterium tuberculosis activity and the cytotoxicity of dichloromethane extract and pure compounds from the leaves of Calophyllum brasiliense. Purification of the dichloromethane extract yielded the pure compounds (-) mammea A/BB (1), (-) mammea B/BB (2) and amentoflavone (3). The compound structures were elucidated on the basis of spectroscopic and spectrometric data. The contents of bioactive compounds in the extracts were quantified using high performance liquid chromatography coupled to an ultraviolet detector. The anti-M. tuberculosis activity of the extracts and the pure compounds was evaluated using a resazurin microtitre assay plate. The cytotoxicity assay was performed in J774G.8 macrophages using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide colourimetric method. The quantification of the dichloromethane extract showed (1) and (2) at concentrations of 31.86 ± 2.6 and 8.24 ± 1.1 µg/mg of extract, respectively. The dichloromethane and aqueous extracts showed anti-M. tuberculosis H37Rv activity of 62.5 and 125 µg/mL, respectively. Coumarins (1) and (2) showed minimal inhibitory concentration ranges of 31.2 and 62.5 µg/mL against M. tuberculosis H37Rv and clinical isolates. Compound (3) showed no activity against M. tuberculosis H37Rv. The selectivity index ranged from 0.59-1.06. We report the activity of the extracts and coumarins from the leaves of C. brasiliense against M. tuberculosis.
Resumo:
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.
Resumo:
Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.
Resumo:
The inducible tetracycline resistance determinant isolated from Proteus mirabilis cloned into the plasmid pACYC177 was mutagenized by insertion of a mini-Mu-lac phage in order to define the regions in the cloned sequences encoding the structural and regulatory proteins. Three different types of mutants were obtained: one lost the resistance phenotype and became Lac+; another expressed the resistance at lower levels and constitutively; the third was still dependent on induction but showed a lower minimal inhibitory concentration. The mutant phenotypes and the locations of the insertions indicate that the determinant is composed of a repressor gene and a structural gene which are not transcribed divergently as are other known tetracycline determinants isolated from Gram-negative bacteria
Resumo:
The antibacterial activity of a series of 1,4-naphthoquinones was demonstrated. Disk diffusion tests were carried out against several Gram-positive and Gram-negative bacteria. The compound 5-amino-8-hydroxy-1,4-naphthoquinone was the most effective, presenting inhibition zones measuring 20 mm against staphylococci, streptococci and bacilli at 50 µg/ml. Methicillin-resistant Staphylococcus aureus and several clinical isolates of this bacterium were also inhibited. Naphthazarin, 5-acetamido-8-hydroxy-1,4-naphthoquinone, and 2,3-diamino-1,4-naphthoquinone were the next most active compounds. The minimal inhibitory concentration of the active compounds was determined against S. aureus, ranging from 30 to 125 µg/ml. All compounds presented a minimal bactericidal concentration higher than 500 µg/ml, indicating that their effect was bacteriostatic. The EC50, defined as the drug concentration that produces 50% of maximal effect, was 8 µg/ml for 5-amino-8-hydroxy-1,4-naphthoquinone against S. aureus, S. intermedius, and S. epidermidis. These results indicate an effective in vitro activity of 5-amino-8-hydroxy-1,4-naphthoquinone and encourage further studies for its application in antibiotic therapy.
Resumo:
Resistance of Streptococcus pneumoniae is a worldwide, growing problem. Studies of factors associated with resistance to penicillin have not been conducted in Brazil. The objective of the present study was to evaluate factors associated with infection by S. pneumoniae not susceptible to penicillin. A prevalence study was conducted including all patients with a positive culture for S. pneumoniae in a hospital from July 1991 to December 1992 and the year 1994. Of 165 patients identified, 139 were considered to have clinically relevant infections and 88% of them had invasive infections. All infections were community acquired and consisted of pneumonia (44%) and of central nervous system (19%), pelvic or abdominal (12%), upper airway or ocular (12%), primary bloodstream (9%) and skin and soft tissue (5%) infections. Mortality was 25%. Susceptibility to penicillin was present in 77.6% of the isolates; 21.8% were relatively resistant, and one isolate was resistant (minimal inhibitory concentration = 4 µg/ml). Multivariate analysis showed that age below 4 years (odds ratio (OR): 3.53, 95% confidence interval (95%CI): 1.39-8.96) and renal failure (OR: 5.50, 95%CI: 1.07-28.36) were associated with lack of susceptibility to penicillin. Bacteremia occurred significantly less frequently in penicillin-nonsusceptible infections (OR: 0.34, 95%CI: 0.14-0.84), possibly suggesting that lack of penicillin susceptibility is associated with lower virulence in S. pneumoniae.
Resumo:
In 2000, Enterococcus faecalis resistant to vancomycin was first reported at a tertiary hospital in Porto Alegre, southern Brazil. The resistance spread to other hospitals and surveillance programs were established by hospital infection committees to prevent the spread of vancomycin-resistant enterococci. In February 2002, an isolate initially identified at the genus level as Enterococcus was obtained by surveillance culture (rectal swab) from a patient admitted to a hospital for treatment of septic arthritis in the shoulder. The isolate proved to be resistant to vancomycin by the disc diffusion method and confirmed by an E-test resulting in a minimal inhibitory concentration of > or = 256 µg/ml. This isolate was sent to a reference laboratory (Laboratório Especial de Bacteriologia e Epidemiologia Molecular, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP) for further study and proved to be an E. gallinarum by the polymerase chain reaction (PCR) using specific primers for the species. Due to the phenotype of unusually high vancomycin resistance, the isolate presumably had the resistance genes (vanA and vanB) and this was confirmed by PCR, which indicated the presence of the vanA gene. A 10.8-kb Tn1546-related transposon was also identified by long-PCR. Interspecies transfer of the vancomycin-resistance gene from the donor E. gallinarum was performed in a successful conjugation experiment in vitro, using E. faecium GE-1 and E. faecalis JH22 as receptors. This is the first report of the detection of a vanA determinant naturally acquired by E. gallinarum in Brazil, indicating the importance of characterizing VRE by both phenotype and genotype methods.
Resumo:
We evaluated the antibacterial activities of the crude methanol extract, fractions (I-V) obtained after acid-base extraction and pure compounds from the stem bark of Aspidosperma ramiflorum. The minimum inhibitory concentration (MIC) was determined by the microdilution technique in Mueller-Hinton broth. Inoculates were prepared in this medium from 24-h broth cultures of bacteria (10(7) CFU/mL). Microtiter plates were incubated at 37ºC and the MICs were recorded after 24 h of incubation. Two susceptibility endpoints were recorded for each isolate. The crude methanol extract presented moderate activity against the Gram-positive bacteria B. subtilis (MIC = 250 µg/mL) and S. aureus (MIC = 500 µg/mL), and was inactive against the Gram-negative bacteria E. coli and P. aeruginosa (MIC > 1000 µg/mL). Fractions I and II were inactive against standard strains at concentrations of <=1000 µg/mL and fraction III displayed moderate antibacterial activity against B. subtilis (MIC = 500 µg/mL) and S. aureus (MIC = 250 µg/mL). Fraction IV showed high activity against B. subtilis and S. aureus (MIC = 15.6 µg/mL) and moderate activity against E. coli and P. aeruginosa (MIC = 250 µg/mL). Fraction V presented high activity against B. subtilis (MIC = 15.6 µg/mL) and S. aureus (MIC = 31.3 µg/mL) and was inactive against Gram-negative bacteria (MIC > 1000 µg/mL). Fractions III, IV and V were then submitted to bioassay-guided fractionation by silica gel column chromatography, yielding individual purified ramiflorines A and B. Both ramiflorines showed significant activity against S. aureus (MIC = 25 µg/mL) and E. faecalis (MIC = 50 µg/mL), with EC50 of 8 and 2.5 µg/mL for ramiflorines A and B, respectively, against S. aureus. These results are promising, showing that these compounds are biologically active against Gram-positive bacteria.
Resumo:
Staphylococcus aureus is highly prevalent among patients with atopic dermatitis (AD), and this pathogen may trigger and aggravate AD lesions. The aim of this study was to determine the prevalence of S. aureus in the nares of pediatric subjects and verify the phenotypic and molecular characteristics of the isolates in pediatric patients with AD. Isolates were tested for antimicrobial susceptibility, SCCmectyping, and Panton-Valentine Leukocidin (PVL) genes. Lineages were determined by pulsed-field gel electrophoresis and multilocus sequence typing (MLST). AD severity was assessed with the Scoring Atopic Dermatitis (SCORAD) index. Among 106 patients, 90 (85%) presented S. aureus isolates in their nares, and 8 also presented the pathogen in their skin infections. Two patients had two positive lesions, making a total of 10 S. aureusisolates from skin infections. Methicillin-resistant S. aureus(MRSA) was detected in 24 (26.6%) patients, and PVL genes were identified in 21 (23.3%), including 6 (75%) of the 8 patients with skin lesions but mainly in patients with severe and moderate SCORAD values (P=0.0095). All 24 MRSA isolates were susceptible to trimethoprim/sulfamethoxazole, while 8 isolates had a minimum inhibitory concentration (MIC) to mupirocin >1024 μg/mL. High lineage diversity was found among the isolates including USA1100/ST30, USA400/ST1, USA800/ST5, ST83, ST188, ST718, ST1635, and ST2791. There was a high prevalence of MRSA and PVL genes among the isolates recovered in this study. PVL genes were found mostly among patients with severe and moderate SCORAD values. These findings can help clinicians improve the therapies and strategies for the management of pediatric patients with AD.
Resumo:
This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.
Resumo:
In this work, the essential oils of S. officinalis, S. sclarea, S. lavandulifolia and S. triloba were chemically analyzed by gas chromatography coupled to a mass spectrometry detector (GC/MSD), and their antimicrobial activity was tested against 10 microorganisms using the disk diffusion method and the Minimum Inhibitory Concentration (MIC) technique. The following major compounds were identified in the essential oils: α - and β-thujone, camphor and 1,8-cineole, except in S. sclarea, where linalool, linalyl acetate and α-terpineol were the major constituents. The antimicrobial activity showed significant differences (p < 0.05) only when obtained by the MIC method. Gram-positive microorganisms presented larger sensitivity for the essential oils. The lowest MIC was observed when Staphylococcus aureus was exposed to 2.31 mg.mL-1 of S. lavandulifolia essential oil, while the highest MIC value was obtained when Shigella flexneri was exposed to 9.25 mg.mL-1 of the same essential oil, thus demonstrating that this essential oil may be effective as a bacteriostatic agent against Gram-positive microorganisms.