61 resultados para Mechanisms of Action


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-training intracerebroventricular administration of procaine (20 µg/µl) and dimethocaine (10 or 20 µg/µl), local anesthetics of the ester class, prolonged the latency (s) in the retention test of male and female 3-month-old Swiss albino mice (25-35 g body weight; N = 140) in the elevated plus-maze (mean ± SEM for 10 male mice: control = 41.2 ± 8.1; procaine = 78.5 ± 10.3; 10 µg/µl dimethocaine = 58.7 ± 12.3; 20 µg/µl dimethocaine = 109.6 ± 5.73; for 10 female mice: control = 34.8 ± 5.8; procaine = 55.3 ± 13.4; 10 µg/µl dimethocaine = 59.9 ± 12.3 and 20 µg/µl dimethocaine = 61.3 ± 11.1). However, lidocaine (10 or 20 µg/µl), an amide class type of local anesthetic, failed to influence this parameter. Local anesthetics at the dose range used did not affect the motor coordination of mice exposed to the rota-rod test. These results suggest that procaine and dimethocaine impair some memory process(es) in the plus-maze test. These findings are interpreted in terms of non-anesthetic mechanisms of action of these drugs on memory impairment and also confirm the validity of the elevated plus-maze for the evaluation of drugs affecting learning and memory in mice

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms underlying risk associated with hypertensive heart disease (HHD) and left ventricular hypertrophy (LVH) are discussed in this report and provide a rationale for understanding this very common and important cause of death from hypertension and its complications. Emphasized are impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis from increased collagen deposition intramurally and perivascularly. Each is exacerbated by aging and, perhaps, also by increased dietary salt intake. These functional and structural changes promote further endothelial dysfunction, altered coronary hemodynamics, and diastolic as well as systolic ventricular contractile function in HHD. The clinical endpoints of HHD include angina pectoris (with or without atherosclerosis of the epicardial coronary arteries), myocardial infarction, cardiac failure, lethal dysrhythmias, and sudden death. The major concept to be derived from these alterations is that not all that is clinically recognized as LVH is true myocytic hypertrophy and structural remodeling. Other major co-morbid changes occur that serve to increase cardiovascular risk including impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to assess the analgesic activity of the aerial parts of two Hypericum species native to Southern Brazil, H. caprifoliatum and H. polyanthemum. The antinociceptive effect of the H. polyanthemum cyclohexane extract (POL; 180 mg/kg) and of the H. caprifoliatum methanol (MET) and cyclohexane (CH) extracts (90 mg/kg) was evaluated in the hot-plate (ip and po) and writhing (po) tests using male Swiss CF1 mice weighing 22-27 g (N = 10 per group). All extracts displayed antinociceptive effects in the hot-plate test (MET ip = 48%, MET po = 39%, CH ip = 27%, CH po = 50%, POL ip = 74%, and POL po = 49% compared to control). Pretreatment with naloxone (2.5 mg/kg, sc) abolished the effects of CH and POL, and partially prevented the analgesia induced by MET administered by the ip (but not by the po) route. POL and CH (po) significantly reduced the number of writhes induced by acetic acid, while MET was ineffective in this regard. We conclude that the antinociceptive effects of the H. caprifoliatum (CH) and H. polyanthemum (POL) hexane extracts seem to be mediated by the opioid system. Moreover, the antinociceptive activity of the H. caprifoliatum MET extract seems to depend on at least two chemical substances (or groups of substances) with distinct pharmacokinetic profiles and mechanisms of action. Only the naloxone-insensitive component of MET activity showed good bioavailability following oral administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic stimulation of sympathetic nervous activity contributes to the development and maintenance of hypertension, leading to left ventricular hypertrophy (LVH), arrhythmias and cardiac death. Moxonidine, an imidazoline antihypertensive compound that preferentially activates imidazoline receptors in brainstem rostroventrolateral medulla, suppresses sympathetic activation and reverses LVH. We have identified imidazoline receptors in the heart atria and ventricles, and shown that atrial I1-receptors are up-regulated in spontaneously hypertensive rats (SHR), and ventricular I1-receptors are up-regulated in hamster and human heart failure. Furthermore, cardiac I1-receptor binding decreased after chronic in vivo exposure to moxonidine. These studies implied that cardiac I1-receptors are involved in cardiovascular regulation. The presence of I1-receptors in the heart, the primary site of production of natriuretic peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), cardiac hormones implicated in blood pressure control and cardioprotection, led us to propose that ANP may be involved in the actions of moxonidine. In fact, acute iv administration of moxonidine (50 to 150 µg/rat) dose-dependently decreased blood pressure, stimulated diuresis and natriuresis and increased plasma ANP and its second messenger, cGMP. Chronic SHR treatment with moxonidine (0, 60 and 120 µg kg-1 h-1, sc for 4 weeks) dose-dependently decreased blood pressure, resulted in reversal of LVH and decreased ventricular interleukin 1ß concentration after 4 weeks of treatment. These effects were associated with a further increase in already elevated ANP and BNP synthesis and release (after 1 week), and normalization by 4 weeks. In conclusion, cardiac imidazoline receptors and natriuretic peptides may be involved in the acute and chronic effects of moxonidine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area) or strain (any forced change in length in relation to the initial length) and shear stress (the stress component parallel to a given surface). The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal ischemia-reperfusion (IR) injury is the major cause of acute renal failure in native and transplanted kidneys. Mononuclear leukocytes have been reported in renal tissue as part of the innate and adaptive responses triggered by IR. We investigated the participation of CD4+ T lymphocytes in the pathogenesis of renal IR injury. Male mice (C57BL/6, 8 to 12 weeks old) were submitted to 45 min of ischemia by renal pedicle clamping followed by reperfusion. We evaluated the role of CD4+ T cells using a monoclonal depleting antibody against CD4 (GK1.5, 50 µ, ip), and class II-major histocompatibility complex molecule knockout mice. Both CD4-depleted groups showed a marked improvement in renal function compared to the ischemic group, despite the fact that GK1.5 mAb treatment promoted a profound CD4 depletion (to less than 5% compared to normal controls) only within the first 24 h after IR. CD4-depleted groups presented a significant improvement in 5-day survival (84 vs 80 vs 39%; antibody treated, knockout mice and non-depleted groups, respectively) and also a significant reduction in the tubular necrosis area with an early tubular regeneration pattern. The peak of CD4-positive cell infiltration occurred on day 2, coinciding with the high expression of ßC mRNA and increased urea levels. CD4 depletion did not alter the CD11b infiltrate or the IFN-g and granzyme-B mRNA expression in renal tissue. These data indicate that a CD4+ subset of T lymphocytes may be implicated as key mediators of very early inflammatory responses after renal IR injury and that targeting CD4+ T lymphocytes may yield novel therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silybin, a natural antioxidant, has been traditionally used against a variety of liver ailments. To investigate its effect and the underlying mechanisms of action on non-alcoholic fatty liver in rats, we used 60 4-6-week-old male Sprague-Dawley rats to establish fatty liver models by feeding a high-fat diet for 6 weeks. Hepatic enzyme, serum lipid levels, oxidative production, mitochondrial membrane fluidity, homeostasis model assessment-insulin resistance index (HOMA-IR), gene and protein expression of adiponectin, and resistin were evaluated by biochemical, reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Compared with the model group, silybin treatment (26.25 mg·kg-1·day-1, started at the beginning of the protocol) significantly protected against high-fat-induced fatty liver by stabilizing mitochondrial membrane fluidity, reducing serum content of alanine aminotransferase (ALT) from 450 to 304 U/L, decreasing hepatic malondialdehyde (MDA) from 1.24 to 0.93 nmol/mg protein, but increasing superoxide dismutase (SOD) and glutathione (GSH) levels from 8.03 to 9.31 U/mg protein and from 3.65 to 4.52 nmol/mg protein, respectively. Moreover, silybin enhanced the gene and protein expression of adiponectin from 215.95 to 552.40, but inhibited that of resistin from 0.118 to 0.018. Compared to rosiglitazone (0.5 mg·kg-1·day-1, started at the beginning of the protocol), silybin was effective in stabilizing mitochondrial membrane fluidity, reducing SOD as well as ALT, and regulating gene and protein expression of adiponectin (P < 0.05). These results suggest that mitochondrial membrane stabilization, oxidative stress inhibition, as well as improved insulin resistance, may be the essential mechanisms for the hepatoprotective effect of silybin on non-alcoholic fatty liver disease in rats. Silybin was more effective than rosiglitazone in terms of maintaining mitochondrial membrane fluidity and reducing oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL) and the shoot (0.5 mg/mL) extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.