47 resultados para Mathematical Programs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Celery (Apium graveolens L. var. secalinum Alef) leaves with 50±0.07 g weight and 91.75±0.15% humidity (~11.21 db) were dried using 8 different microwave power densities ranging between 1.8-20 W g-1, until the humidity fell down to 8.95±0.23% (~0.1 db). Microwave drying processes were completed between 5.5 and 77 min depending on the microwave power densities. In this study, measured values were compared with predicted values obtained from twenty thin layer drying theoretical, semi-empirical and empirical equations with a new thin layer drying equation. Within applied microwave power density; models whose coefficient and correlation (R²) values are highest were chosen as the best models. Weibull distribution model gave the most suitable predictions at all power density. At increasing microwave power densities, the effective moisture diffusivity values ranged from 1.595 10-10 to 6.377 10-12 m2 s-1. The activation energy was calculated using an exponential expression based on Arrhenius equation. The linear relationship between the drying rate constant and effective moisture diffusivity gave the best fit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Sugarcane monosaccharides are reducing sugars, and classical analytical methodologies (Lane-Eynon, Benedict, complexometric-EDTA, Luff-Schoorl, Musson-Walker, Somogyi-Nelson) are based on reducing copper ions in alkaline solutions. In Brazil, certain factories use Lane-Eynon, others use the equipment referred to as “REDUTEC”, and additional factories analyze reducing sugars based on a mathematic model. The objective of this paper is to understand the relationship between variations in millivolts, mass and tenors of reducing sugars during the analysis process. Another objective is to generate an automatic model for this process. The work herein uses the equipment referred to as “REDUTEC”, a digital balance, a peristaltic pump, a digital camcorder, math programs and graphics programs. We conclude that the millivolts, mass and tenors of reducing sugars exhibit a good mathematical correlation, and the mathematical model generated was benchmarked to low-concentration reducing sugars (<0.3%). Using the model created herein, reducing sugars analyses can be automated using the new equipment.