125 resultados para MATRIX MOLECULAR-WEIGHT
Resumo:
In schistosomiasis, the host/parasite interaction remains not completely understood. Many questions related to the susceptibility of snails to infection by respective trematode still remain unanswered. The control of schistosomiasis requires a good understanding of the host/parasite association. In this work, the susceptibility/resistance to Schistosoma mansoni infection within Biomphalaria alexandrina snails were studied starting one month post infection and continuing thereafter weekly up to 10 weeks after miracidia exposure. Genetic variations between susceptible and resistant strains to Schistosoma infection within B. alexandrina snails using random amplified polymorphic DNA analysis technique were also carried out. The results showed that 39.8% of the examined field snails were resistant, while 60.2% of these snails showed high infection rates.In the resistant genotype snails, OPA-02 primer produced a major low molecular weight marker 430 bp. Among the two snail strains there were interpopulational variations, while the individual specimens from the same snail strain, either susceptible or resistant, record semi-identical genetic bands. Also, the resistant character was ascendant in contrast to a decline in the susceptibility of snails from one generation to the next.
Resumo:
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Resumo:
Chemokines are a superfamily of low-molecular-weight cytokines that were initially described for their chemoattractant activity. It is now clear chemokines have several other activities that modulate immune processes. More than 50 chemokines ligands and at least 19 receptors have been described to date. Depending on the number of N-terminal cysteine residues, chemokines are grouped in the subfamilies CXC, CC, C or CX3C. A growing body of evidence suggests a role for chemokines in the pathogenesis of several inflammatory diseases. Our studies involving mice and humans infected with Schistosoma mansoni suggest an important role of the chemokine CCL3 and its receptors (CCR1 and CCR5) in the pathogenesis of severe schistosomiasis. We suggest that the differential activation of CCR1 or CCR5 during the course of schistosomiasis may dictate the outcome of the disease.
Resumo:
Rhodnius prolixus is the main Trypanosoma rangeli vector in several Latin-American countries and is susceptible to infection with KP1(+) strains; however, it presents an invasion-resistant response to KP1(-) strains. The present work has identified a trypanolytic protein against T. rangeli KP1(-) in the R. prolixus hemolymph which was fractioned with ammonium sulfate (following dialysis). The results revealed a protein component which did not depend on divalent cations for its biological function whilst keeping its trypanolytic activity at temperatures ranging from -20ºC to 37ºC, at 7.0 to 10.5 pH. The protein was partially purified by gel filtration chromatography and ionic exchange chromatography. The major component presented a molecular weight of around 79 kDa and an isoelectric point between 4.9 and 6.3 and may be directly related to hemolymph trypanolytic activity against T. rangeli KP1(-) populations.
Resumo:
In previous work, we proposed alternative protocols for following patients with treated Chagas disease and these are reviewed herein. Evidence was provided to support the following: (i) functional anti-trypomastigote antibodies are indicative of ongoing chronic Trypanosoma cruzi infections; (ii) specific antibodies detected by conventional serology (CS) with epimastigote extracts, fixed trypomastigotes or other parasite antigens may circulate years after parasite elimination; (iii) functional antibodies are evidenced by complement-mediated lysis of freshly isolated trypomastigotes, a test which is 100% specific, highly sensitive, and the first to revert after T. cruzi elimination and (iv) the parasite target for the lytic antibodies is a glycoprotein of high molecular weight (gp160) anchored at the parasite surface. The complement regulatory protein has been cloned, sequenced and produced as a recombinant protein by other groups and is useful for identifying functional anti-T. cruzi antibodies in ELISA tests, thus dispensing with the need for live trypomastigotes to manage treated patients. If used instead of CS to define cures for Chagas patients, ELISA will avoid unnecessary delays in finding anti-T. cruzi drugs. Other highly sensitive techniques for parasite DNA detection, such as PCR, need to be standardized and included in future protocols for the management of patients with drug-treated Chagas disease.
Resumo:
The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.
Resumo:
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.
Resumo:
The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.
Resumo:
ABSTRACT Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
This research aimed to characterize the tolerance to flooding and alterations in pectic and hemicellulose fractions from mesocotyl of maize tolerant to flooding when submitted to hypoxia. In order to characterize tolerance seeds from maize cultivars Saracura BRS-4154 and BR 107 tolerant and sensitive to low oxygen levels, respectively, were set to germinate. Plantlet survival was evaluated during five days after having been submitted to hypoxia. After fractionation with ammonium oxalate 0.5% (w/v) and KOH 2M and 4M, Saracura BRS-4154 cell wall was obtained from mesocotyl segments with different damage intensities caused by oxygen deficiency exposure. The cell wall fractions were analyzed by gel filtration and gas chromatography, and also by Infrared Spectrum with Fourrier Transformation (FTIR). The hypoxia period lasting three days or longer caused cell lysis and in advanced stages plant death. The gelic profile from pectic, hemicellulose 2M and 4M fractions from samples with translucid and constriction zone showed the appearance of low molecular weight compounds, similar to glucose. The main neutral sugars in pectic and hemicellulose fractions were arabinose, xilose and mannose. The FTIR spectrum showed a gradual decrease in pectic substances from mesocotyl with normal to translucid and constriction appearance respectively.
Resumo:
The aim of this work was to quantify low molecular weight organic acids in the rhizosphere of plants grown in a sewage sludge-treated media, and to assess the correlation between the release of the acids and the concentrations of trace-elements in the shoots of the plants. The species utilized in the experiment were cultivated in sand and sewage sludge-treated sand. The acetic, citric, lactic, and oxalic acids, were identified and quantified by high performance liquid chromatography in samples collected from a hydroponics system. Averages obtained from each treatment, concentration of trace elements in shoots and concentration of organic acids in the rhizosphere, were compared by Tukey test, at 5% of probability. Linear correlation analysis was applied to verify an association between the concentrations of organic acids and of trace elements. The average composition of organic acids for all plants was: 43.2, 31.1, 20.4 and 5.3% for acetic, citric, lactic, and oxalic acids, respectively. All organic acids evaluated, except for the citric acid, showed a close statistical agreement with the concentrations of Cd, Cu, Ni, and Zn found in the shoots. There is a positive relationship between organic acids present in the rhizosphere and trace element phytoavailability.
Resumo:
The objective of this work was to evaluate the effect of organic compounds from plant extracts of six species and phosphate fertilization on soil phosphorus availability. Pots of 30 cm height and 5 cm diameter were filled with Typic Hapludox. Each pot constituted a plot of a completely randomized design, in a 7x2 factorial arrangement, with four replicates. Aqueous extracts of black oat (Avena strigosa), radish (Raphanus sativus), corn (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), sorghum (Sorghum bicolor), and water, as control, were added in each plot, with or without soluble phosphate fertilization. After seven days of incubation, soil samples were taken from soil layers at various depths, and labile, moderately labile and nonlabile P fractions in the soil were analysed. Plant extracts led to an accumulation of inorganic phosphorus in labile and moderately labile fractions, mainly in the soil surface layer (0-5 cm). Radish, with a higher amount of malic acid and higher P content than other species, was the most efficient in increasing soil P availability.
Resumo:
The objective of this work was to determine the contribution of dissolved organic carbon (DOC) from a biochar mineral complex (BMC), so as to better understand the interactions between DOC, biochar, clay, and minerals during thermal treatment, and the effects of BMC on amended soils. The BMC was prepared by heating a mixture of a H3PO4-treated saligna biochar from Acacia saligna, clays, other minerals, and chicken manure. The BMC was applied to a sandy loam soil in Western Australia, where wheat was grown. Liquid chromatography-organic carbon detection (LC-OCD) tests were carried out on water extracts from the untreated biochar, the BMC, the BMC-amended soil, and on a control soil to measure the DOC concentration. LC-OCD tests provide a fingerprint of the DOC, which allows the fractions of DOC to be determined. Thermal processing enhanced the reaction of the A. saligna biochar with manure, clays and minerals, and affected the distribution of the DOC fractions. Notably, the process leads to immobilization of hydrophobic DOC and to an increase in the concentration of low-molecular-weight neutrals in the BMC. The application of the BMC to soil increases the DOC in the amended soil, especially the biopolymer fraction.
Resumo:
In this work, analytical strategies are evaluated in order to measure accurately the ambient levels of atmospheric organic acids. Environmental considerations about the determination of low molecular weight mono- and di-carboxylic acids from urban areas of São Paulo are described.
Resumo:
In this work, samples of chitosan obtained in different conditions were characterized by molecular weight distribution, using Gel Permeation Chromatography (GPC), in two different solvents. It was observed that the increase in the number of deacetylation steps promotes a increase in the degree of deacetylation followed by a decrease in the average of molecular weight and polydispersion. The GPC curves obtained for chitosan samples in the two solvents used (CH3COOH 0.30 mol/dm³ - CH3CONa 0.20 mol/dm³ and CH3COOH 0.10 mol/dm³ - NaCl 0.20 mol/dm³) showed small difference in elution volume, but significant changes in the average molecular weight (Mn and Mw) and polydispersion that, in agree with the values of Huggins constant, present evidences of chitosan aggregates formation in the second solvent.