61 resultados para Lactic Acid Bacteria, Oxidative Defence, Sulphur Metabolism, Cystine Transport
Resumo:
Cassava starch factories produce residues that can be commercialized as food ingredients. The objective of this study was to evaluate the microbiological safety of cassava peel and bagasse during storage, with and without chemical treatment. The bagasse was acidified with lactic acid, and the peel was immersed in a sodium hypochlorite solution. The microbiological analyses were carried out for 72 h after harvest. All of the samples showed the absence of pathogenic microorganisms, and the acidification and sanitization were effective in controlling total coliforms. Cassava bagasse and peel samples can be considered safe for consumption by humans as ingredients for other food products.
Resumo:
Grape seed oil (GSO) is not often consumed in Brazil and little is known of its nutritional value. Around the world there are already studies that point to the high levels of minority bioactive compounds and their relation to health benefits. The main constituent of GSO is linoleic fatty acid, some works are controversial and there is no consensus in literature regarding their effect on the animal organism. Thus, this study aimed to present a review of GSO and show the potential health effects of its major components, not only linoleic acid, but also γ-tocotrienol and β-sitosterol, and finally, their influence on lipid-modulating, anti and pro oxidative parameters.
Resumo:
We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.
Resumo:
Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB) accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag)- that measured changes in free potentials induced by the presence of exogeneously added sulphide) and SRB concentration (enumerated by a culturing method). E (Ag) was characterized under a variety of conditions andwas found to be relatively immune to possible interference resulting from aeration of media or from the psence of iron corrosion products. The method offers a simple, rapid, and effective means of diagnosing biocorrosive processes prior to their control.
Resumo:
Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland) adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA) production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa) as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the reference strainAzospirillum brasilense, Ab-V5. The results indicate the potential of T. spicatus as native plant source of plant growth promoting bacteria.
Resumo:
The weaning period of piglets is characterized by physiological alterations, such as decreased weight gain, increased reactive oxygen species (ROS) and increased serum cortisol levels with possible effects on the immune response. The effect of parenteral administration of vitamins A, D and E on production performance, oxidative metabolism, and the function of polymorphonuclear leukocytes (PMNLs) was assessed in piglets during the weaning period. The sample was comprised of 20 male piglets that were given an injectable ADE vitamin combination (135,000 IU vitamin A, 40,000 IU vitamin D and 40mg vitamin E/ animal) at 20 and 40 days of age. Weight gain, concentration of reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and the microbicidal and phagocytic activity of PMNLs were assessed. No difference was observed in the average piglet weight during the study; however, a greater percentage of weight gain was observed after weaning in the treated group. The concentrations of GSH and SOD did not differ between groups, although lipid peroxidation was greater in the control group at 60 days of age. The investigated variables of oxidative metabolism were correlated as follows: -0.41 for GSH and MDA, -0.54 for GSH and SOD and 0.34 for MDA and SOD. The intensity of intracellular ROS production, the percentage of ROS-producing PMNLs and the intensity of phagocytosis by PMNLs did not differ between treatment groups. Administration of the injectable ADE combination improved the percentage of weight gain between 20 and 40 days of age, decreased oxidative stress at 60 days of age and did not influence the function of PMNLs in piglets.
Resumo:
Experiments were designed to study in-vivo effects of sodium cyanide on biochemical endpoints in the freshwater fish Labeo rohita. Fish were exposed to two sublethal concentrations (0.106 and 0.064mg/L) for a period of 15 days. Levels of glycogen, pyruvate, lactate and the enzymatic activities of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PDH), phosphorylase, alkaline phosphatase (ALP), acid phosphatase (AcP) were assessed in different tissues (liver, muscle and gills). Result indicated a steady decrease in glycogen, pyruvate, SDH, ALP and AcP activity with a concomitant increase in the lactate, phosphorylase, LDH and G6PD activity in all selected tissues. The alterations in all the above biochemical parameters were significantly (p<0.05) time and dose dependent. In all the above parameters, liver pointing out the intensity of cyanide intoxication compare to muscle and gills. Study revealed change in the metabolic energy by means of altered metabolic profile of the fish. Further, these observations indicated that even sublethal concentrations of sodium cyanide might not be fully devoid of deleterious influence on metabolism in L. rohita.
Resumo:
Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS) and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG) and a control group (CG). The TG animals received the ADE vitamin complex (1mL/50 kg of body weight) by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK), lactate dehydrogenase (LDH), lactate, glucose, aspartate aminotransferase (AST), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.
Resumo:
(Comparative uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid in callus cultures of monocot (Dioscorea spp.) and dicot (Nicotiana tabacum L.) plants). The uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid (2,4-D) were investigated in leaf calluses of Nicotiana tabacum, tuber calluses of Dioscorea opposita and calluses derived from zygotic embryos, leaves and petioles of Dioscorea composita. Striking similarities were evident in the patterns of 2,4-D metabolites and their chemical characteristics in the three callus types of D. composita compared, but significant differences were detected among the patterns of rnetabolites in the three species studied. Preliminary investigations on the stability of various metabolites (separated using TLC) by hydrolysis showed that sugar esters appeared to be the major metabolites in tobacco whilst in yams (D. opposita) glycosides were shown to be the main ones, which indicated a similarity between plants of Gramineae and Dioscoreaceae in terms of 2,4-D metabolism. Release of 2,4-D from tobacco callus cells upon their transfer to 2,4-D-free medium was detected and the implications of this are discussed in relation to the cultural conditions necessary to induce morphogenesis in vitro.
Resumo:
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Resumo:
The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA) stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells), Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold), whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.
Resumo:
The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60%) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25%) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.
Resumo:
Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.