67 resultados para Kinetic undercooling
Resumo:
The physical-chemical process of swelling in water-based gel of natural polymers is investigated with the purpose of applying these systems to biomedical materials for controlled release of drugs. In this work we develop a study about the sol-gel transition of solutions of chitosan in the presence of formaldehyde and glutaraldehyde like crosslinking agents and we have determined the effect of many aditives in the time of gelification from the elaborated sistems. The phisical-chemistry process of swelling of the formed gels was evaluated in function of the degree of crosslinking of the incorporated aditives and the pH. Gelling times of chitosan solutions were obtained using viscosimetric measurement, in the pre-gel state, as well as condutivity ones.The results obtained suggest that component concentration modifies the kinetic profile of the transition and the swelling behavior. Regarding H+ content, the gels were highly susceptible to swelling in acidic conditions, which characterize this system as pH - sensitive.
Resumo:
In organic synthesis, lipases are the most frequently used biocatalysts. They are efficient stereoselective catalysts in the kinetic resolution of a wide variety of chiral compounds. The discovery that enzymes possess catalytic activity in organic solvents has made it possible to address the question of reaction medium influence on enzymatic specificity. Perhaps the most exciting and significant development in this emerging area is the discovery that enzyme specificity, in particular enantioselectivity, can be affected by changing from one organic solvent to another. This article discusses the scope and possible mechanistic models of this phenomenon in hydrolases, specially lipases, as well as directions of future research in the area.
Resumo:
Theoretical and practical aspects concerning construction and use of a thin layer electrochemical cell are presented. Construction was realized by a simple technic and geometry was optimized in order to minimize the problems of electrical resistance. A well known redox system was studied ((Fe(III)(CN)6(3-)/Fe(II)(CN) 6(4-)) using two experimental methods, cyclic voltammetry and pulse chronopotentiometry. A numerical integration based-program was developed to calculate the voltammetric current in case of nernstian and non-nernstian behaviours and a diffusional model was used to treat the chronopotentiometric data. Thermodynamic (potential, concentration) and kinetic parameters (diffusion coefficient) were successfully determined for the redox system studied in this work.
Resumo:
Didactic experiments are proposed in order to demonstrate the characteristics of flow injection analysis and to extend the applications of FIA to the determination of physical chemistry parameters in undergraduate labs. All experiments can be performed with the same flow manifold by employing usual FIA devices. Analytical characteristics are presented by means of the determination of iron in river water, employing 1,10-phenantroline as chromogenic reagent. Physical chemistry applications were the determination of reaction stoichiometries by continuous variation and mole-ratio methods and the evaluation of the pH and ionic strength effects on the kinetic of the reduction of hexacianoferrate(III) by ascorbic acid.
Resumo:
Phenil glycidyl ether (PGE), a monofunctional diluent, has been used in epoxy resins formulations in order to increase the toughness of the epoxy molded composite. In a systematic study concerning its influence in the cure kinetics of the epoxy resin, it was used in concentrations of 2,5; 5,0; 10 and 20% in relation to a diglycidyl ether bisphenol-A (DGEBA)/diamino diphenil-sulfone (DDS) base matrix. Dynamic and isothermal scanning analysis were carried out using a differential scanning calorimety (DSC) equipment. For all the concentrations of PGE, a n order kinetics was observed, with n varing between 0,35 -- 0,91 as a function of the increase in the PGE concentration.
Resumo:
Biogenic emissions of volatile organic compounds play a fundamental role in the atmospheric chemistry, vegetation being one of their major sources. Amongst the VOCs emitted by plants, olefins and terpenoids are the most abundant. These compounds, due to the presence of two or more double bonds and other structural features, are very reactive in the atmosphere and act as precursors of the photochemical smog and aerosols. This article presents a review of the reactions of olefins and terpenoids with ozone, in the gas phase, with emphasis toward the mechanisms and kinetic aspects.
Resumo:
The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional : oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher disperdion when cerium oxide is present.
Resumo:
This paper presents some results that may be used as previous considerations to a hydrogen peroxide electrogeneration process design. A kinetic study of oxygen dissolution in aqueous solution is carried out and rate constants for oxygen dissolution are calculated. Voltammetric experiments on vitreous carbon cathode shown that the low saturation concentration drives the oxygen reduction process to a mass transfer controlled process which exhibits low values of limiting currents. Results have shown that the hydrogen peroxide formation and its decomposition to water are separated by 400 mV on the vitreous carbon surface. Diffusion coefficients for oxygen and hydrogen peroxide are calculated using data taken from Levich and Tafel plots. In a series of bulk electrolysis experiments hydrogen peroxide was electrogenerated at several potential values, and concentration profiles as a function of the electrical charged passed were obtained. Data shown that, since limiting current plateaus are poorly defined onto reticulated vitreous carbon, cathodic efficiency may be a good criterion for choosing the potential value in which hydrogen peroxide electrogeneration should be carried out.
Resumo:
The photodegradation of parathion in natural and dezionised waters was studied under irradiation at two different wavelengths: 280 nm and 313 nm. The influence of humic acids was evaluated. The results demonstrated that the degradation occurred only due to photochemical processes. The chemical hydrolysis and biological processes can be neglected in this case. The addition of humic acids did not increase the photodegradation rate in either water samples (natural or dezionised). In alkaline solutions the photodegradation rate was higher in dezionised water when compared to natural waters. The kinetic degradation in all experiments obeyed a first order reaction pattern.
Resumo:
Aluminum and copper doped hematite was evaluated in the high temperature shift (HTS) reaction at several temperatures in order to find catalysts that can work in different operational conditions. It was found that the catalysts work in kinetic regime in the range of 300-400 ºC. Both copper and aluminum increases the activity and selectivity. Aluminum acts as textural promoter whereas copper acts as structural one. The most promising catalyst is that with both copper and aluminum which showed higher activity and selectivity than a commercial sample. This catalyst has the advantages of being non toxic and can work at low temperatures.
Resumo:
We consider the relevance of the study of the glassy state properties and the glass transition as important topics of the physical chemistry for undergraduate courses of Chemistry. Two of the most important theoretical approaches for the description of the glassy state, the thermodynamic and the kinetic models, are summarized with emphasis on the physical chemistry aspects. Examples illustrating the glass transition of some materials are also presented.
Resumo:
The thermal decomposition reaction of pinacolone diperoxide (DPP; 0.02 mol kg-1) in 2-methoxyethanol solution studied in the temperature range of 110.0-150.0 °C, follows a first-order kinetic law up to at least 50% DPP conversion. The organic products observed were pinacolone, methane and tert-butane. A stepwise mechanism of decomposition was proposed where the first step is the homolytic unimolecular rupture of the O-O bond. The activation enthalpy and activation entropy for DPP in 2-methoxyethanol were calculated (deltaH# = 43.8 ± 1.0 kcal mol-1 and deltaS# = 31.9 ± 2.6 cal mol-1K-1) and compared with those obtained in other solvents to evaluate the solvent effect.
Resumo:
The involvement of lipoxygenase isozymes in several physiological processes of plants has been described but their role is not well understood and more biochemical studies are needed to elucidate the role of the "Lipoxygenase Pathway" in plant physiology. Thus, the biochemical and kinetic characterization of a lipoxygenases "pool" from soybean leaves was carried out. Two genotypes were used: IAC-100 (a normal variety having lipoxygenases in the seeds) and IAC-100 TN (genetically modified genotype, which is devoid of lipoxygenases in the seeds). The plants were submitted to the application of fatty acids (lipoxygenase substrates) on leaves. The results of the biochemical and kinetic studies of lipoxygenase isozymes from leaves of the two genotypes analysed showed that genetic removal of lipoxygenase from seeds did not affect the response of the plant to the treatment, since both genotypes showed similar results.
Resumo:
Relevant aspects of proposed mechanisms of the chemiluminescent reaction of luminol are presented and commented to emphasize its perspectives for kinetic analysis. A careful search for analytical applications of this reaction is discussed in order to point out new trends of the studies. Kinetic analysis using the luminol reaction is proposed to be a very attractive due to the good performance of the reaction in analytical applications and the positive characteristics of kinetic analysis, such as low cost and sensibility. It is pointed out that kinetic analysis using the chemiluminescent reaction of luminol should be encouraged.
Resumo:
This article suggests a sequence of experiments on the preparation, analysis and some photochemical aspects of potassium tris (oxalato) ferrate(III) trihydrate. The sequence of experiments could be carried out in four or five 4-hour laboratory periods. The new part of this article is related to the kinetics studies involving the ambient illumination as well as the use of the cellophane paper of different colors as light filters. The aspects such as quantum yield, light absorption and photochemical reactions are explored in order to illustrate the relationships between the exposure time, light intensity and wavelength range on the photochemical reactions.