63 resultados para Interaction liming and zinc
Resumo:
The chemical and physical characterization of coastal peat has been studied. It was examined the pH, organic matter content and elementary and XRD analyses, among other characteristics. The peat was then applied to the retention and competition of metal micronutrients (Cu and Zn) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was relevant to each pH examined.
Resumo:
The aim of this work was to explore the possibility of the application of a non-ionic resin obtained by impregnation of Alizarin Red S (VAS) in Amberlite XAD-7 for manganese, copper and zinc separation and preconcentration in saline matrices. For these system, the metals were quantitatively retained, in the pH range 8.5-10.0, by using 0.50 g of solid phase, stirring time of five minutes and a total mass up to 200 mug of each cation. The sorbed elements were subsequently eluted and a fifty-fold, ten-fold and ten-fold preconcentration factor for to Zn, Cu and Mn were obtained, respectively.
Resumo:
This work presents zinc determination in certain medicines that contain zinc oxide and zinc undecylenate. The technique consists of a spectrophotometric micro-scale titration, where EDTA is used as titrant, and xylenol orange as an indicator, in a medium adjusted to pH = 6 with acetic acid and sodium acetate. After each added portion of EDTA, the absorbance value is measured at a selected wavelength, in order to detect the end-point of the spectrophotometric titration. The results already obtained are satisfactory and promote student's interest. An additional contribution intends to propose the use of micro-scale techniques.
Resumo:
This work proposes an analytical procedure for direct determination of calcium, magnesium, manganese and zinc in buffalo milk by flame atomic absorption spectrometry (FAAS). Samples were diluted with a solution containing 10% (v/v) of water-soluble tertiary amines (CFA-C) at pH 8. For comparison, buffalo milk samples were digested with HNO3 and H2O2. According to a paired t-test, the results obtained in the determination of Ca, Mg, Mn and Zn in digested samples and in 10% (v/v) CFA-C medium were in agreement at a 95% confidence level. The developed procedure is simple, rapid, decrease the possibility of contamination and can be applied for the routine determination of Ca, Mg, Mn and Zn in buffalo milk samples without any difficulty caused by matrix constituents, such as fat content, and particle size distribution in the milk emulsion.
Resumo:
Extended Hildebrand Solubility Approach (EHSA) developed by Martin et al. was applied to evaluate the solubility of ketoprofen (KTP) in ethanol + water cosolvent mixtures at 298.15 K. Calculated values of molar volume and solubility parameter for KTP were used. A good predictive capacity of EHSA was found by using a regular polynomial model in order five to correlate the W interaction parameter and the solubility parameters of cosolvent mixtures (δmix). Nevertheless, the deviations obtained in the estimated solubilities with respect to the experimental solubilities were on the same order like those obtained directly by means of an empiric regression of the logarithmic experimental solubilities as a function of δmix values.
Resumo:
Objective of this work was identifying superficial water quality parameters, significant to semi-arid hydrographic basins, minimizing costs of water monitoring. The Salitre river basin, an important sub-basin of the São Francisco river, was used as a case study. STD, Cl-, DO, BOD, pH, NO3-, PO4(3-), Al, Cu, Fe, Mn, Ni and Pb were considered the most significant parameters, with concentration levels found in some stretches of the basin not compliant with the current legislation. Some of the Salitre river basin sediments may represent a risk to the quality of the water body in relation to levels of nickel and zinc.
Resumo:
Land reclamation fills in the city of Rio Grande (RS) are polluted by mercury with concentrations ranging from 0.3 to 18.7 mg kg-1. The level of Hg pollution decreases from the oldest landfills of 18th century to recent ones. Mercury distribution along vertical profiles resembles the same for copper, lead, and zinc, what allow supposing that mercury distribution has an autochthonous character. It is suggested that the principal source of mercury pollution was the activities related to animal skin and fair hair treatment, using ancient technology known as "carroting". Similar scenario of environmental risk could be met in other Brazilian cities with similar colonization history.
Resumo:
This work describes methodologies for speciation analysis of the metals copper and zinc as total, total dissolved, labile, as well as complexation capacity (conditional stability constants and available ligand concentration), using the same technique, differential pulse anodic stripping voltammetry (DPASV). Several supporting electrolytes were tested, and the results showed that KNO3 and HNO3 resulted in voltamograms without interferences as well as excellent resolution for the total and labile fractions. The methodology using the DPASV technique allows a simple and low cost analysis of copper and zinc speciation, with high precision and sensitivity, with limits of quantification (LOQ) of 1.8 nmol L-1 for copper and 2.1 nmol L-1 for zinc.
Resumo:
This work aimed to access the contents and chemical forms and to estimate mobility and availability of cooper and zinc in samples from two soils (Haplortox and Paleudult) previously treated with doses of sewage sludge (SS) and municipal solid waste compost (MSWC), besides a control treatment. Largest percentages of Cu and Zn were determined in the organic matter fraction. Zn showed higher percentages of soluble and exchangeable fractions than Cu. Treatments with SS showed higher potential of Cu and Zn availability. Modifications in soil attributes due to residue application affected metal mobility and availability indexes.
Resumo:
Metals such as copper and zinc are essential for the development and maintenance of numerous enzymatic activities, mitochondrial functions, neurotransmission, and also for memorization and learning. However, disruption in their homeostasis can cause neurodegenerative disorders such as the Alzheimer and Parkinson diseases. In this work, the speciation of copper and zinc in urine samples was carried out. To this end, free and total metal concentrations were determined by square wave anodic stripping voltammetry using a glassy carbon electrode coated with bismuth film. The digestion of the samples was performed in a microwave with the addition of oxidant reagents.
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
Resumo:
The aim of this work is to systematically explore the effect of the synthesis conditions of ZnO structures, immobilized on different substrates by hydrothermal treatment, in its photocatalytic activity. A circumscribed central composite design of experiments was used to analyze the effects of reagents stoichiometry, reaction time and temperature, covering a wide range of these variables. The substrates used were etched glass, copper and zinc foils. The photocatalytic activity of the as-obtained ZnO samples was evaluated through photocatalytic degradation of rhodamine B (RhB) in aqueous solution under UV irradiation. Zinc foils presented the best immobilized film quality and the maximum dye removal was 80% in one hour of UV exposure.
Resumo:
If the mental can affect, or be affected by, the physical, then the mental must itself be physical. Otherwise the physical world would not be explanatorily closed. But it is closed. There are reasons to hold that materialism (in both its reductive and non-reductive varieties) is false. So how are we to explain the apparent responsiveness of the physical to the mental and vice versa? The only possible solution seems to be this: physical objects are really projections or isomorphs of objects whose essential properties are mental. (A slightly less accurate way of putting this would be to say: the constitutive - i.e. the non-structural and non-phenomenal - properties of physical objects are mental, i.e. are such as we are used to encountering only in "introspection".) The chair, qua thing that I can know through sense perception, and through hypotheses based strictly thereupon, is a kind of shadow of an object that is exactly like it, except that this other objects essential properties are mental. This line of thought, though radically counterintuitive, explains the apparent responsiveness of the mental to the physical, and vice versa, without being open to any of the criticisms to which materialism, dualistic interaction ism, and epiphenomenalism are open.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
The true spinach (Spinacia oleracea) does not grow well in warm climates and for that reason is not commercialized in Brazil. Instead, a spinach substitute (Tetragonia expansa), originally from New Zealand, is widely used in the country. There is scant information on the mineral profile and none on the soluble mineral fraction of this vegetable. The solubility of a mineral is one of the important factors for its absorption. For this reason, the calcium, magnesium, iron, manganese, copper, zinc, potassium, and sodium soluble fractions in the raw spinach substitute were determined and the effect of blanching times on the solubility of these minerals was investigated. Blanching times of 1, 5, and 15 minutes were employed. The magnesium, manganese, potassium, and sodium soluble fractions increased sizably with shorter blanching time. Longer blanching time (15 minutes) caused large losses of minerals. The soluble mineral fractions can contribute poorly to diet in terms of potassium, magnesium, manganese, and zinc. The spinach substitute cannot be considered a dietary source of calcium, iron and copper due to the insolubility of these minerals in the vegetable, possibly caused by the large oxalate content.