58 resultados para Il-1
Resumo:
Acne vulgaris is a multifactorial disease affecting a majority of the adolescent population. The objective of this study was to test for a correlation between fasting serum lipid profiles and levels of testosterone, insulin, leptin, and interleukin 1-β (IL-1β) and the incidence of severe acne vulgaris in obese adolescent females. Four groups of adolescent females were studied: obese with acne, obese without acne, non-obese with acne, and non-obese without acne. Obese females with acne, compared to obese females without acne and non-obese subjects, had significantly higher serum triglycerides, low-density lipoprotein cholesterol and apolipoprotein-B (apo-B) (mean ± SD: 197 ± 13.7 vs 171 ± 11.5, 128 ± 8.3 vs 116 ± 7.7, 96 ± 13.7 vs 85 ± 10.3 mg/dL, respectively) but significantly lower high-density lipoprotein cholesterol and apo-A1 levels (40 ± 3.3 vs 33 ± 3.5 and 126 ± 12 vs 147 ± 13 mg/dL). Serum testosterone, insulin and leptin levels were significantly higher in obese subjects with or without acne compared to non-obese females with or without acne (3 ± 0.5 vs 2.1 ± 0.47, 15.5 ± 3.3 vs 11.6 ± 3, 0.9 ± 0.2 vs 0.6 ± 0.15 nmol/mL, respectively). Serum IL-1b was significantly elevated in obese and non-obese subjects with acne compared to subjects without acne; in those without acne, these levels were higher in obese than non-obese subjects (2.4 ± 0.2, 1.4 ± 0.1 vs 1.8 ± 0.12 and 1.3 ± 0.11 pg/mL, respectively). Our results indicate that there is a relationship between obesity (BMI >27) and acne. By early recognition, the etiology and treatment protocol of acne may prevent unwanted conditions.
Resumo:
Interleukin-18 (IL-18) is a cytokine that belongs to the IL-1 family. Endometriosis is strongly associated with sub-fertility, and affects about 15% of women of reproductive age. IL-18 may favor the progression of endometriosis. The objective of the present study was to determine the concentration of IL-18 in the serum and peritoneal fluid of infertile women with endometriosis. Forty infertile and 25 fertile women were screened in a teaching hospital. Thirty-four infertile patients with minimal or mild endometriosis and 22 fertile controls were enrolled in the study. The primary outcome was the estimate of IL-18 levels and the secondary outcome was the correlation between serum and peritoneal levels of IL-18. There were no differences between the two groups regarding age, body mass index and levels of peritoneal fluid IL-18 (mean ± SD): 290.85 ± 173.02 pg/mL for infertile women vs 374.21 ± 330.15 pg/mL for controls; or serum IL-18: 391.07 ± 119.71 pg/mL for infertile women vs 373.42 ± 129.11 pg/mL for controls. However, a positive association was found between serum and peritoneal IL-18 levels in patients with endometriosis: r = 0.794, P = 0.0001. All measurements were carried out at the same time by the Human IL-18 Immuno Assay ELISA kit (MBL Co. Ltd., Japan). The present study did not find evidence supporting the hypothesis that IL-18 levels are associated with infertility in women with minimal and mild endometriosis, although a positive correlation was detected in these women between peritoneal and serum levels of IL-18.
Resumo:
Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM) on plasma cytokine release in 10 healthy subjects (age: 26.1 ± 1.2 years, BMI: 23.8 ± 3.6 kg/m²). LHM was performed applying continuous positive airway pressure (CPAP) with a face mask, increased by 3-cmH2O steps up to 20 cmH2O every 5 breaths. At CPAP 20 cmH2O, an inspiratory pressure of 20 cmH2O above CPAP was applied, reaching an airway pressure of 40 cmH2O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05) all measured cytokines (TNF-α: 1.2 ± 3.8 vs 6.4 ± 8.6 pg/mL; IL-1β: 4.9 ± 15.6 vs 22.4 ± 28.4 pg/mL; IL-6: 1.4 ± 3.3 vs 6.5 ± 5.6 pg/mL; IL-8: 13.2 ± 8.8 vs 33.4 ± 26.4 pg/mL; IL-10: 3.3 ± 3.3 vs 7.7 ± 6.5 pg/mL, and IL-12: 3.1 ± 7.9 vs 9 ± 11.4 pg/mL), which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6) and anti-inflammatory (IL-10) cytokines (r = 0.89, P = 0.004). LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects.
Resumo:
Babies with gastroschisis have high morbidity, which is associated with inflammatory bowel injury caused by exposure to amniotic fluid. The objective of this study was to identify components of the inflammatory response in the intestine and liver in an experimental model of gastroschisis in rats. The model was surgically created at 18.5 days of gestation. The fetuses were exposed through a hysterotomy and an incision at the right of the umbilicus was made, exposing the fetal bowel. Then, the fetus was placed back into the uterus until term. The bowel in this model had macro- and microscopic characteristics similar to those observed in gastroschisis. The study was conducted on three groups of 20 fetuses each: gastroschisis, control, and sham fetuses. Fetal body, intestine and liver weights and intestine length were measured. IL-1β, IL-6, IL-10, TNF-α, IFN-γ and NF-kappaB levels were assessed by ELISA. Data were analyzed statistically by ANOVA followed by the Tukey post-test. Gastroschisis fetuses had a decreased intestine length (means ± SD, 125 ± 25 vs 216 ± 13.9; P < 0.005) and increased intestine weight (0.29 ± 0.05 vs 0.24 ± 0.04; P < 0.005). Intestine length correlated with liver weight only in gastroschisis fetuses (Pearson’s correlation coefficient, r = 0.518, P = 0.019). There were no significant differences in the concentrations of IL-1β, TNF-α or IFN-γ in the intestine, whereas the concentration of NF-kappaB was increased in both the intestine and liver of fetuses with gastroschisis. These results show that the inflammatory response in the liver and intestine of the rat model of gastroschisis is accompanied by an increase in the amount of NF-kappaB in the intestine and liver.
Resumo:
After myocardial infarction (MI), activation of the immune system and inflammatory mechanisms, among others, can lead to ventricular remodeling and heart failure (HF). The interaction between these systemic alterations and corresponding changes in the heart has not been extensively examined in the setting of chronic ischemia. The main purpose of this study was to investigate alterations in cardiac gene and systemic cytokine profile in mice with post-ischemic HF. Plasma was tested for IgM and IgG anti-heart reactive repertoire and inflammatory cytokines. Heart samples were assayed for gene expression by analyzing hybridization to AECOM 32k mouse microarrays. Ischemic HF significantly increased the levels of total serum IgM (by 5.2-fold) and total IgG (by 3.6-fold) associated with a relatively high content of anti-heart specificity. A comparable increase was observed in the levels of circulating pro-inflammatory cytokines such as IL-1β (3.8X) and TNF-α (6.0X). IFN-γ was also increased by 3.1-fold in the MI group. However, IL-4 and IL-10 were not significantly different between the MI and sham-operated groups. Chemokines such as MCP-1 and IL-8 were 1.4- and 13-fold increased, respectively, in the plasma of infarcted mice. We identified 2079 well annotated unigenes that were significantly regulated by post-ischemic HF. Complement activation and immune response were among the most up-regulated processes. Interestingly, 21 of the 101 quantified unigenes involved in the inflammatory response were significantly up-regulated and none were down-regulated. These data indicate that post-ischemic heart remodeling is accompanied by immune-mediated mechanisms that act both systemically and locally.
Resumo:
The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.
Resumo:
The limited amount of information on the primary age-related deficiencies in the innate immune system led us to study the production of inducible nitric oxide synthase (iNOS), arginase, and cytokines in macrophages of young (8 weeks old) and old (72 weeks old) female BALB/c mice. We first evaluated iNOS and arginase inducers on peritoneal (PMΦ) and bone marrow-derived (BMMΦ) macrophages of young BALB/c and C57BL/6 mice, and then investigated their effects on macrophages of old mice. Upon stimulation with lipopolysaccharide (LPS), resident and thioglycolate-elicited PMΦ from young mice presented higher iNOS activity than those from old mice (54.4%). However, LPS-stimulated BMMΦ from old mice showed the highest NO levels (50.1%). Identical NO levels were produced by PMΦ and BMMΦ of both young and old mice stimulated with interferon-γ. Arginase activity was higher in resident and elicited PMΦ of young mice stimulated with LPS (48.8 and 32.7%, respectively) and in resident PMΦ stimulated with interleukin (IL)-4 (64%). BMMΦ of old mice, however, showed higher arginase activity after treatment with IL-4 (46.5%). In response to LPS, PMΦ from old mice showed the highest levels of IL-1α (772.3 ± 51.9 pg/mL), whereas, those from young mice produced the highest amounts of tumor necrosis factor (TNF)-α (937.2 ± 132.1 pg/mL). Only TNF-α was expressed in LPS-treated BMMΦ, and cells from old mice showed the highest levels of this cytokine (994.1 ± 49.42 pg/mL). Overall, these results suggest that macrophages from young and old mice respond differently to inflammatory stimuli, depending on the source and maturity of the cell donors.
Resumo:
We investigated the effect of propofol (Prop) administration (10 mg kg-1 h-1, intravenously) on lipopolysaccharide (LPS)-induced acute lung injury and its effect on cluster of differentiation (CD) 14 and Toll-like receptor (TLR) 4 expression in lung tissue of anesthetized, ventilated rats. Twenty-four male Wistar rats were randomly divided into three groups of 8 rats each: control, LPS, and LPS+Prop. Lung injury was assayed via blood gas analysis and lung histology, and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were determined in bronchoalveolar lavage fluid using ELISA. Real-time polymerase chain reaction was used to detect CD14 and TLR4 mRNA levels, and CD14 and TLR4 protein expression was determined by Western blot. The pathological scores were 1.2 ± 0.9, 3.3 ± 1.1, and 1.9 ± 1.0 for the control, LPS, and LPS+Prop groups, respectively, with statistically significant differences between control and LPS groups (P < 0.05) and between LPS and LPS+Prop groups (P < 0.05). The administration of LPS resulted in a significant increase in TNF-α and IL-1β levels, 7- and 3.5-fold, respectively (P < 0.05), while treatment with propofol partially blunted the secretion of both cytokines (P < 0.05). CD14 and TLR4 mRNA levels were increased in the LPS group (1.48 ± 0.05 and 1.26 ± 0.03, respectively) compared to the control group (1.00 ± 0.20 and 1.00 ± 0.02, respectively; P < 0.05), while propofol treatment blunted this effect (1.16 ± 0.05 and 1.12 ± 0.05, respectively; P < 0.05). Both CD14 and TLR4 protein levels were elevated in the LPS group compared to the control group (P < 0.05), while propofol treatment partially decreased the expression of CD14 and TLR4 protein versus LPS alone (P < 0.05). Our study indicates that propofol prevents lung injury, most likely by inhibition of CD14 and TLR4 expression.
Resumo:
Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg,ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35±9.8 mm2); increased levels of TNF-α, IL-1β, and MDA (2311±302.3 pg/mL, 901.9±106.2 pg/mL, 121.1±4.3 nmol/g, respectively); increased MPO activity (26.1±3.8 U/mg); and reduced GSH levels (180.3±21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77±5.3 mm2); reduced TNF-α, IL-1β, and MDA formation (1502±150.2 pg/mL, 632.3±43.4 pg/mL, 78.4±7.6 nmol/g, respectively); lowered MPO activity (11.7±2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9±40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels.
Resumo:
The immunostimulatory properties of inactivated Parapoxvirus ovis (iPPVO) have long been investigated in different animal species and experimental settings. In this study, we investigated the effects of iPPVO on cytokine expression in mice after intraperitoneal inoculation. Spleen and sera collected from iPPVO-treated mice at intervals after inoculation were submitted to cytokine mRNA determination by real-time PCR (qPCR), serum protein concentration by ELISA, and interferon (IFN)-α/β activity by bioassay. The spleen of iPPVO-treated animals showed a significant increase in mRNA expression of all cytokines assayed, with different kinetics and magnitude. Proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), and IL-8 mRNA peaked at 24 hours postinoculation (hpi; 5.4-fold increase) and 48 hpi (3- and 10-fold increases), respectively. A 15-fold increase in IFN-γ and 6-fold IL-12 mRNA increase were detected at 48 and 24 hpi, respectively. Increased expression of autoregulatory cytokines (Th2), mainly IL-10 and IL-4, could be detected at later times (72 and 96 hpi) with peaks of 4.7- and 4.9-fold increases, respectively. IFN-I antiviral activity against encephalomyocarditis virus was demonstrated in sera of treated animals between 6 and 12 hpi, with a >90% reduction in the number of plaques. Measurement of serum proteins by ELISA revealed increased levels of IL-1, TNF-α, IL-12, IFN-γ, and IL-10, with kinetics similar to those observed by qPCR, especially for IL-12 and IFN-γ. These data demonstrate that iPPVO induced a transient and complex cytokine response, initially represented by Th1-related cytokines followed by autoregulatory and Th2 cytokines.
Resumo:
This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.
Resumo:
Milk fat globule epidermal growth factor 8 (MFG-E8) is an opsonin involved in the phagocytosis of apoptotic cells. In patients with chronic obstructive pulmonary disease (COPD), apoptotic cell clearance is defective. However, whether aberrant MFG-E8 expression is involved in this defect is unknown. In this study, we examined the expression of MFG-E8 in COPD patients. MFG-E8, interleukin (IL)-1β and transforming growth factor (TGF)-β levels were measured in the plasma of 96 COPD patients (93 males, 3 females; age range: 62.12±10.39) and 87 age-matched healthy controls (85 males, 2 females; age range: 64.81±10.11 years) using an enzyme-linked immunosorbent assay. Compared with controls, COPD patients had a significantly lower plasma MFG-E8 levels (P<0.01) and significantly higher plasma TGF-β levels (P=0.002), whereas there was no difference in plasma IL-1β levels between the two groups. Moreover, plasma MFG-E8 levels decreased progressively between Global Initiative for Chronic Obstructive Lung Disease (GOLD) I and GOLD IV stage COPD. Multiple regression analysis showed that the forced expiratory volume in 1 s (FEV1 % predicted) and smoking habit were powerful predictors of MFG-E8 in COPD (P<0.01 and P=0.026, respectively). MFG-E8 was positively associated with the FEV1 % predicted and negatively associated with smoking habit. The area under the receiver operating characteristic curve was 0.874 (95% confidence interval: 0.798-0.95; P<0.01). Our findings demonstrated the utility of MFG-E8 as a marker of disease severity in COPD and that cigarette smoke impaired MFG-E8 expression in these patients.
Resumo:
Cardiopulmonary bypass (CPB) with extracorporeal circulation produces changes in the immune system accompanied by an increase in proinflammatory cytokines and a decrease in anti-inflammatory cytokines. We hypothesize that dexmedetomidine (DEX) as an anesthetic adjuvant modulates the inflammatory response after coronary artery bypass graft surgery with mini-CPB. In a prospective, randomized, blind study, 12 patients (4 females and 8 males, age range 42-72) were assigned to DEX group and compared with a conventional total intravenous anesthesia (TIVA) group of 11 patients (4 females and 7 males). The endpoints used to assess inflammatory and biochemical responses to mini-CPB were plasma interleukin (IL)-1, IL-6, IL-10, interferon (INF)-γ, tumor necrosis factor (TNF)-α, C-reactive protein, creatine phosphokinase, creatine phosphokinase-MB, cardiac troponin I, cortisol, and glucose levels. These variables were determined before anesthesia, 90 min after beginning CPB, 5 h after beginning CPB, and 24 h after the end of surgery. Endpoints of oxidative stress, including thiobarbituric acid reactive species and delta-aminolevulinate dehydratase activity in erythrocytes were also determined. DEX+TIVA use was associated with a significant reduction in IL-1, IL-6, TNF-α, and INF-γ (P<0.0001) levels compared with TIVA (two-way ANOVA). In contrast, the surgery-induced increase in thiobarbituric acid reactive species was higher in the DEX+TIVA group than in the TIVA group (P<0.01; two-way ANOVA). Delta-aminolevulinate dehydratase activity was decreased after CPB (P<0.001), but there was no difference between the two groups. DEX as an adjuvant in anesthesia reduced circulating IL-1, IL-6, TNF-α, and INF-γ levels after mini-CPB. These findings indicate an interesting anti-inflammatory effect of DEX, which should be studied in different types of surgical interventions.