90 resultados para Hot-humid climate
Resumo:
Highly eusocial bees (Hymenoptera, Apidae) flower visitors in a continental sand dune ecosystem from the medium São Francisco River, Bahia, Brazil. A community of highly eusocial bees in sand dunes, covered with caatinga vegetation, in the medium São Francisco River, Bahia (10º47' 37"S and 42º49' 25"W) was studied. The local climate is semi arid and hot, with mean temperature of 25.7 ºC and annual precipitation of 653.8 mm. Censuses took place every two months, from February to December of 2000. The bees were sampled on flowers with entomological nets, from 6:00 a.m. to 5:00 p.m. A total of 2,147 individuals of eight species of Apinae were found, of which Apis mellifera Linnaeus (40.2%), Trigona spinipes (Fabricius) (28.7%) and Frieseomelitta silvestri languida Moure (14.7%) were the predominant species. The diversity was H' = 1.53 and the evenness E' = 0.73. The bees were active during the whole year, but there was a significant variation in the monthly abundance of individuals (c2= 799.55; df= 35; p<0.0001). The daily activity was greater between 6:00 a.m. and 8:00 a.m. The low bee diversity observed is a consequence of the low richness of botanical species and of the small amount of sites for the bees' nests. The community of highly eusocial bees from the dunes presents organization patterns similar to those observed in other caatinga areas, albeit with some particularities.
Resumo:
Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil. Carabidae is composed mainly by ground-dwelling predator beetles. It is the fourth most diverse group within Coleoptera, but its diversity in the Neotropical region is understudied. Here we describe and analyze the diversity of carabid beetles in a region of subtropical rain forest dominated by Araucaria angustifolia with different landscapes. Three areas were chosen in an environmental integrity gradient: primary forests, secondary forests and old Pinus plantations. Pitfall traps were taken monthly, in a total of 14 samples per area. 1733 adult carabid beetles, belonging to 18 species, were sampled. There were differences in richness and abundance between the sampled areas. The total scores followed the same tendency: primary forests (14 species/747 individuals), secondary forests (13/631) and Pinus forests (10/355). An analysis of similarity shows differences in species composition, for both areas and seasons. Galerita lacordarei was the most abundant species for all samples and seasons. Carabid species show similar responses in accordance with habitat heterogeneity and disturbance. The abundance of Galerita lacordarei was influenced by temperature, for all sampled sites. Environmental changes affect the carabid assemblages and decrease diversity, possibly interfering in local dynamics. Seasonality patterns seem to indicate an increase in individual movement during summer, probably in search of resources. It is suggested that microhabitat patchiness is probably an important factor affecting carabid beetle diversity at small spatial scales.
Resumo:
Liming is a common practice to raise soil pH and increase phosphorus (P) bioavailability in tropical regions. However, reports on the effect of liming on P sorption and bioavailability are controversial. The process of phosphorus desorption is more important than P sorption for defining P bioavailability. However few studies on the relationship between soil pH and P desorption are available, and even fewer in the tropical soils. The effects of soil pH on P sorption and desorption in an Ultisol from Bahia, Brazil, were investigated in this study. Phosphorus sorption decreased by up to 21 and 34 % with pH increases from 4.7 to 5.9 and 7.0, respectively. Decreasing Langmuir K parameter and decreasing partition coefficients (Kd) with increasing pH supported this trend. Phosphorus desorption was positively affected by increased soil pH by both the total amount of P desorbed and the ratio of desorbed P to initially sorbed P. A decreased K parameter and increased Kd value, particularly at the highest pH value and highest P-addition level, endorsed this phenomenon. Liming the soil had the double effect of reducing P sorption (up to 4.5 kg ha-1 of remaining P in solution) and enhancing P desorption (up to 2.7 kg ha-1 of additionally released P into solution).
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
Spot bloth caused by Bipolaris sorokiniana is an important wheat desease mainly in hot and humid regions. The aim of this study was to evaluate the response of wheat to different sources and modes of Si application, as related to the severity of wheat spot blotch and plant growth, in two Si-deficient Latosols (Oxisols). An greenhouse experiment was arranged in a 2 x 5 factorial completely randomized design, with eight replications. The treatments consisted of two soils (Yellow Latosol and Red Latosol) and five Si supply modes (no Si application; Si applied as calcium silicate and monosilicic acid to the soil; and Si applied as potassium silicate or monosilicic acid to wheat leaves). No significant differences were observed between the two soils. When Si was applied to the soil, regardless the Si source, the disease incubation period, the shoot dry matter yield and the Si content in leaves were greater. Additionally, the final spot blotch severity was lower and the area under the spot blotch disease progress curve and the leaf insertion angle in the plant were smaller. Results of Si foliar application were similar to those observed in the control plants.
Resumo:
The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.
Resumo:
Soil organic matter (SOM) plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years) of tillage (CT-conventional tillage and NT-no tillage) and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation) on total, particulate and mineral-associated organic carbon (C) stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification), the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C stock qualitatively in relation to CT R0. The results highlighted the diversification of crop rotation with cover crops as a crucial strategy for atmospheric C-CO2 sequestration and SOM quality improvement in highly weathered subtropical Oxisols.
Resumo:
The aim of this study was to calibrate the CENTURY, APSIM and NDICEA simulation models for estimating decomposition and N mineralization rates of plant organic materials (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum, Stylosanthes guyanensis) for 360 days in the Atlantic rainforest bioma of Brazil. The models´ default settings overestimated the decomposition and N-mineralization of plant residues, underlining the fact that the models must be calibrated for use under tropical conditions. For example, the APSIM model simulated the decomposition of the Stizolobium aterrimum and Calopogonium mucunoides residues with an error rate of 37.62 and 48.23 %, respectively, by comparison with the observed data, and was the least accurate model in the absence of calibration. At the default settings, the NDICEA model produced an error rate of 10.46 and 14.46 % and the CENTURY model, 21.42 and 31.84 %, respectively, for Stizolobium aterrimum and Calopogonium mucunoides residue decomposition. After calibration, the models showed a high level of accuracy in estimating decomposition and N- mineralization, with an error rate of less than 20 %. The calibrated NDICEA model showed the highest level of accuracy, followed by the APSIM and CENTURY. All models performed poorly in the first few months of decomposition and N-mineralization, indicating the need of an additional parameter for initial microorganism growth on the residues that would take the effect of leaching due to rainfall into account.
Resumo:
Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
Ironstones or petroplinthites are common materials in soils under humid tropical climate, generally defined as the result of Fe oxide accumulation in areas where the water table oscillates, and may exhibit considerable morphological variability. The aim of this study was to examine the internal structure and porosity of an ironstone fragment from a Petroferric Acrudox in Minas Gerais, Brazil, by computed tomography (CT) and conventional techniques. The sample analyzed had total porosity of 59.5 %, with large macropores in the form of tubular channels and irregular vughs, the latter with variable degrees of infilling by material released from the ironstone walls or the soil matrix. The CT scan also showed that the ironstone has wide variation in the density of the solid phase, most likely due to higher concentrations or thick intergrowths of hematite and magnetite/maghemite, especially in its outer rims. The implications of these results for water retention and soil formation in ironstone environments are briefly discussed.
Resumo:
ABSTRACT The semiarid region of northeastern Brazil has a large area occupied by Planosols, where in the State of Pernambuco these soils are mainly used for livestock farming and subsistence crops. The knowledge on these soils is limited, which compromises the understanding on their behavior, potentialities and limitations.This study aimed to analyze morphological, chemical, physical and mineralogical attributes of Planosols developed under different geoenvironmental conditions. Morphological descriptions and chemical, physical and mineralogical analyses were performed in four profiles of Planosols along a rainfall gradient. An increase in rainfall allowed for an increase in the clay content in the Bt horizon and a reduction in ESP, EC, Na+, CEC, S, pH (water and KCl) and soil density. Horizons A and E were thicker in Planosols in more humid environments. The increase in ESP associated with the presence of expansive minerals (smectite and vermiculite) allowed the development of a prismatic structure in Haplic Planosols and a columnar structure in Natric Planosols. The mineralogical assembly is indicative of poorly weathered soils. The mineralogical assemblies of the silt and clay fractions were similar in the different geoenvironments, while higher contents of easily alterable minerals were observed in the composition of the sand fraction in environments with a drier climate.
Resumo:
The objective of this study was to determine the effects of rainfall, temperature, sunlight and relative humidity, as well as predators and parasitoids, leaf chemical composition and levels of leaf nitrogen and potassium on the intensity of Scirtothrips manihoti (Thysanoptera: Thripidae) attack on cassava Manihot esculenta Crantz var. Cacau. The leaf compounds (E)-farnesene/trans-farnesol and D-friedoolean-14-en-3-one correlated significantly with the population of S. manihoti. Insect population decreased in the dry and cold season probably due to leaf senescence. Significative correlation was observed between Syrphidae with S. manihoti populations.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
This paper reviews the methods for the inventory of below-ground biotas in the humid tropics, to document the (hypothesized) loss of soil biodiversity associated with deforestation and agricultural intensification at forest margins. The biotas were grouped into eight categories, each of which corresponded to a major functional group considered important or essential to soil function. An accurate inventory of soil organisms can assist in ecosystem management and help sustain agricultural production. The advantages and disadvantages of transect-based and grid-based sampling methods are discussed, illustrated by published protocols ranging from the original "TSBF transect", through versions developed for the alternatives to Slash-and-Burn Project (ASB) to the final schemes (with variants) adopted by the Conservation and Sustainable Management of Below-ground Biodiversity Project (CSM-BGBD). Consideration is given to the place and importance of replication in below-ground biological sampling and it is argued that the new sampling protocols are inclusive, i.e. designed to sample all eight biotic groups in the same field exercise; spatially scaled, i.e. provide biodiversity data at site, locality, landscape and regional levels, and link the data to land use and land cover; and statistically robust, as shown by a partial randomization of plot locations for sampling.