113 resultados para Heart-rate-variability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic retinopathy has been associated with cardiac autonomic dysfunction in both type 1 and type 2 diabetes mellitus (DM) patients. Heart rate (HR) changes during exercise testing indicate early alterations in autonomous tonus. The aim of the present study was to investigate the association of diabetic retinopathy with exercise-related HR changes. A cross-sectional study was performed on 72 type 2 and 40 type 1 DM patients. Autonomic dysfunction was assessed by exercise-related HR changes (Bruce protocol). The maximum HR increase, defined as the difference between the peak exercise rate and the resting rate at baseline, and HR recovery, defined as the reduction in HR from the peak exercise to the HR at 1, 2, and 4 min after the cessation of the exercise, were determined. In type 2 DM patients, lower maximum HR increase (OR = 1.62, 95%CI = 1.03-2.54; P = 0.036), lower HR recovery at 2 (OR = 2.04, 95%CI = 1.16-3.57; P = 0.012) and 4 min (OR = 2.67, 95%CI = 1.37-5.20; P = 0.004) were associated with diabetic retinopathy, adjusted for confounding factors. In type 1 DM, the absence of an increase in HR at intervals of 10 bpm each during exercise added 100% to the odds for diabetic retinopathy (OR = 2.01, 95%CI = 1.1-3.69; P = 0.02) when adjusted for DM duration, A1c test and diastolic blood pressure. In conclusion, early autonomic dysfunction was associated with diabetic retinopathy. The recognition of HR changes during exercise can be used to identify a high-risk group for diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To examine the effects of the length and timing of nighttime naps on performance and physiological functions, an experimental study was carried out under simulated night shift schedules. METHODS: Six students were recruited for this study that was composed of 5 experiments. Each experiment involved 3 consecutive days with one night shift (22:00-8:00) followed by daytime sleep and night sleep. The experiments had 5 conditions in which the length and timing of naps were manipulated: 0:00-1:00 (E60), 0:00-2:00 (E120), 4:00-5:00 (L60), 4:00-6:00 (L120), and no nap (No-nap). During the night shifts, participants underwent performance tests. A questionnaire on subjective fatigue and a critical flicker fusion frequency test were administered after the performance tests. Heart rate variability and rectal temperature were recorded continuously during the experiments. Polysomnography was also recorded during the nap. RESULTS: Sleep latency was shorter and sleep efficiency was higher in the nap in L60 and L120 than that in E60 and E120. Slow wave sleep in the naps in E120 and L120 was longer than that in E60 and L60. The mean reaction time in L60 became longer after the nap, and faster in E60 and E120. Earlier naps serve to counteract the decrement in performance and physiological functions during night shifts. Performance was somewhat improved by taking a 2-hour nap later in the shift, but deteriorated after a one-hour nap. CONCLUSIONS: Naps in the latter half of the night shift were superior to earlier naps in terms of sleep quality. However performance declined after a 1-hour nap taken later in the night shift due to sleep inertia. This study suggests that appropriate timing of a short nap must be carefully considered, such as a 60-min nap during the night shift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:Sudden death is the leading cause of death in Chagas disease (CD), even in patients with preserved ejection fraction (EF), suggesting that destabilizing factors of the arrhythmogenic substrate (autonomic modulation) contribute to its occurrence.Objective:To determine baroreflex sensitivity (BRS) in patients with undetermined CD (GI), arrhythmogenic CD with nonsustained ventricular tachycardia (NSVT) (GII) and CD with spontaneous sustained ventricular tachycardia (STV) (GIII), to evaluate its association with the occurrence and complexity of arrhythmias.Method:Forty-two patients with CD underwent ECG and continuous and noninvasive BP monitoring (TASK force monitor). The following were determined: BRS (phenylephrine method); heart rate variability (HRV) on 24-h Holter; and EF (echocardiogram).Results:GIII had lower BRS (6.09 ms/mm Hg) as compared to GII (11.84) and GI (15.23). The difference was significant between GI and GIII (p = 0.01). Correlating BRS with the density of ventricular extrasystoles (VE), low VE density (<10/h) was associated with preserved BRS. Only 59% of the patients with high VE density (> 10/h) had preserved BRS (p = 0.003). Patients with depressed BRS had higher VE density (p = 0.01), regardless of the EF. The BRS was the only variable related to the occurrence of SVT (p = 0.028).Conclusion:The BRS is preserved in undetermined CD. The BRS impairment increases as disease progresses, being more severe in patients with more complex ventricular arrhythmias. The degree of autonomic dysfunction did not correlate with EF, but with the density and complexity of ventricular arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. Objective: To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. Methods: This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Results: Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Conclusions: Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:In chronic Chagas disease (ChD), impairment of cardiac autonomic function bears prognostic implications. Phase‑rectification of RR-interval series isolates the sympathetic, acceleration phase (AC) and parasympathetic, deceleration phase (DC) influences on cardiac autonomic modulation.Objective:This study investigated heart rate variability (HRV) as a function of RR-interval to assess autonomic function in healthy and ChD subjects.Methods:Control (n = 20) and ChD (n = 20) groups were studied. All underwent 60-min head-up tilt table test under ECG recording. Histogram of RR-interval series was calculated, with 100 ms class, ranging from 600–1100 ms. In each class, mean RR-intervals (MNN) and root-mean-squared difference (RMSNN) of consecutive normal RR-intervals that suited a particular class were calculated. Average of all RMSNN values in each class was analyzed as function of MNN, in the whole series (RMSNNT), and in AC (RMSNNAC) and DC (RMSNNDC) phases. Slopes of linear regression lines were compared between groups using Student t-test. Correlation coefficients were tested before comparisons. RMSNN was log-transformed. (α < 0.05).Results:Correlation coefficient was significant in all regressions (p < 0.05). In the control group, RMSNNT, RMSNNAC, and RMSNNDCsignificantly increased linearly with MNN (p < 0.05). In ChD, only RMSNNAC showed significant increase as a function of MNN, whereas RMSNNT and RMSNNDC did not.Conclusion:HRV increases in proportion with the RR-interval in healthy subjects. This behavior is lost in ChD, particularly in the DC phase, indicating cardiac vagal incompetence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Morbid obesity is directly related to deterioration in cardiorespiratory capacity, including changes in cardiovascular autonomic modulation. Objective: This study aimed to assess the cardiovascular autonomic function in morbidly obese individuals. Methods: Cross-sectional study, including two groups of participants: Group I, composed by 50 morbidly obese subjects, and Group II, composed by 30 nonobese subjects. The autonomic function was assessed by heart rate variability in the time domain (standard deviation of all normal RR intervals [SDNN]; standard deviation of the normal R-R intervals [SDNN]; square root of the mean squared differences of successive R-R intervals [RMSSD]; and the percentage of interval differences of successive R-R intervals greater than 50 milliseconds [pNN50] than the adjacent interval), and in the frequency domain (high frequency [HF]; low frequency [LF]: integration of power spectral density function in high frequency and low frequency ranges respectively). Between-group comparisons were performed by the Student’s t-test, with a level of significance of 5%. Results: Obese subjects had lower values of SDNN (40.0 ± 18.0 ms vs. 70.0 ± 27.8 ms; p = 0.0004), RMSSD (23.7 ± 13.0 ms vs. 40.3 ± 22.4 ms; p = 0.0030), pNN50 (14.8 ± 10.4 % vs. 25.9 ± 7.2%; p = 0.0061) and HF (30.0 ± 17.5 Hz vs. 51.7 ± 25.5 Hz; p = 0.0023) than controls. Mean LF/HF ratio was higher in Group I (5.0 ± 2.8 vs. 1.0 ± 0.9; p = 0.0189), indicating changes in the sympathovagal balance. No statistical difference in LF was observed between Group I and Group II (50.1 ± 30.2 Hz vs. 40.9 ± 23.9 Hz; p = 0.9013). Conclusion: morbidly obese individuals have increased sympathetic activity and reduced parasympathetic activity, featuring cardiovascular autonomic dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Recent studies have shown changes in cardiac autonomic control of obese preadolescents. Objective: To assess the heart rate responses and cardiac autonomic modulation of obese preadolescents during constant expiratory effort. Methods: This study assessed 10 obese and 10 non-obese preadolescents aged 9 to 12 years. The body mass index of the obese group was between the 95th and 97th percentiles of the CDC National Center for Health Statistics growth charts, while that of the non-obese group, between the 5th and 85th percentiles. Initially, they underwent anthropometric and clinical assessment, and their maximum expiratory pressures were obtained. Then, the preadolescents underwent a constant expiratory effort of 70% of their maximum expiratory pressure for 20 seconds, with heart rate measurement 5 minutes before, during and 5 minutes after it. Heart rate variability (HRV) and heart rate values were analyzed by use of a software. Results: The HRV did not differ when compared before and after the constant expiratory effort intra- and intergroup. The heart rate values differed (p < 0.05) during the effort, being the total variation in non-obese preadolescents of 18.5 ± 1.5 bpm, and in obese, of 12.2 ± 1.3 bpm. Conclusion: The cardiac autonomic modulation did not differ between the groups when comparing before and after the constant expiratory effort. However, the obese group showed lower cardiovascular response to baroreceptor stimuli during the effort, suggesting lower autonomic baroreflex sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Smoking consumption alters cardiac autonomic function. Objective: Assess the influence of the intensity of smoking and the nicotine dependence degree in cardiac autonomic modulation evaluated through index of heart rate variability (HRV). Methods: 83 smokers, of both genders, between 50 and 70 years of age and with normal lung function were divided according to the intensity of smoking consumption (moderate and severe) and the nicotine dependency degree (mild, moderate and severe). The indexes of HRV were analyzed in rest condition, in linear methods in the time domain (TD), the frequency domain (FD) and through the Poincaré plot. For the comparison of smoking consumption, unpaired t test or Mann-Whitney was employed. For the analysis between the nicotine dependency degrees, we used the One-way ANOVA test, followed by Tukey's post test or Kruskal-Wallis followed by Dunn's test. The significance level was p < 0,05. Results: Differences were only found when compared to the different intensities of smoking consumption in the indexes in the FD. LFun (62.89 ± 15.24 vs 75.45 ± 10.28), which corresponds to low frequency spectrum component in normalized units; HFun (37.11 ± 15.24 vs 24.55 ± 10.28), which corresponds to high frequency spectrum component in normalized units and in the LF/HF ratio (2.21 ± 1.47 vs 4.07 ± 2.94). However, in the evaluation of nicotine dependency, significant differences were not observed (p > 0.05). Conclusion: Only the intensity of smoking consumption had an influence over the cardiac autonomic modulation of the assessed tobacco smokers. Tobacco smokers with severe intensity of smoking consumption presented a lower autonomic modulation than those with moderate intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This prospective study analyzed the involvement of the autonomic nervous system in pulmonary and cardiac function by evaluating cardiovascular reflex and its correlation with pulmonary function abnormalities of type 2 diabetic patients. Diabetic patients (N = 17) and healthy subjects (N = 17) were evaluated by 1) pulmonary function tests including spirometry, He-dilution method, N2 washout test, and specific airway conductance (SGaw) determined by plethysmography before and after aerosol administration of atropine sulfate, and 2) autonomic cardiovascular activity by the passive tilting test and the magnitude of respiratory sinus arrhythmia (RSA). Basal heart rate was higher in the diabetic group (87.8 ± 11.2 bpm; mean ± SD) than in the control group (72.9 ± 7.8 bpm, P<0.05). The increase of heart rate at 5 s of tilting was 11.8 ± 6.5 bpm in diabetic patients and 17.6 ± 6.2 bpm in the control group (P<0.05). Systemic arterial pressure and RSA analysis did not reveal significant differences between groups. Diabetes intragroup analysis revealed two behaviors: 10 patients with close to normal findings and 7 with significant abnormalities in terms of RSA, with the latter subgroup presenting one or more abnormalities in other tests and clear evidence of cardiovascular autonomic dysfunction. End-expiratory flows were significantly lower in diabetic patients than in the control group (P<0.05). Pulmonary function tests before and after atropine administration demonstrated comparable responses by both groups. Type 2 diabetic patients have cardiac autonomic dysfunction that is not associated with bronchomotor tone alterations, probably reflecting a less severe impairment than that of type 1 diabetes mellitus. Yet, a reduction of end-expiratory flow was detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptozotocin (STZ)-induced diabetes in rats is characterized by cardiovascular dysfunction beginning 5 days after STZ injection, which may reflect functional or structural autonomic nervous system damage. We investigated cardiovascular and autonomic function, in rats weighing 166 ± 4 g, 5-7, 14, 30, 45, and 90 days after STZ injection (N = 24, 33, 27, 14, and 13, respectively). Arterial pressure (AP), mean AP (MAP) variability (standard deviation of the mean of MAP, SDMMAP), heart rate (HR), HR variability (standard deviation of the normal pulse intervals, SDNN), and root mean square of successive difference of pulse intervals (RMSSD) were measured. STZ induced increased glycemia in diabetic rats vs control rats. Diabetes reduced resting HR from 363 ± 12 to 332 ± 5 bpm (P < 0.05) 5 to 7 days after STZ and reduced MAP from 121 ± 2 to 104 ± 5 mmHg (P = 0.007) 14 days after STZ. HR and MAP variability were lower in diabetic vs control rats 30-45 days after STZ injection (RMSSD decreased from 5.6 ± 0.9 to 3.4 ± 0.4 ms, P = 0.04 and SDMMAP from 6.6 ± 0.6 to 4.2 ± 0.6 mmHg, P = 0.005). Glycemia was negatively correlated with resting AP and HR (r = -0.41 and -0.40, P < 0.001) and with SDNN and SDMMAP indices (r = -0.34 and -0.49, P < 0.01). Even though STZ-diabetic rats presented bradycardia and hypotension early in the course of diabetes, their autonomic function was reduced only 30-45 days after STZ injection and these changes were negatively correlated with plasma glucose, suggesting a metabolic origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the impact of electroconvulsive therapy on arterial blood pressure, heart rate, heart rate variability, and the occurrence of ischemia or arrhythmias, 38 (18 men) depressive patients free from systemic diseases, 50 to 83 years old (mean: 64.7 ± 8.6) underwent electroconvulsive therapy. All patients were studied with simultaneous 24-h ambulatory blood pressure and Holter monitoring, starting 18 h before and continuing for 3 h after electroconvulsive therapy. Blood pressure, heart rate, heart rate variability, arrhythmias, and ischemic episodes were recorded. Before each session of electroconvulsive therapy, blood pressure and heart rate were in the normal range; supraventricular ectopic beats occurred in all patients and ventricular ectopic beats in 27/38; 2 patients had non-sustained ventricular tachycardia. After shock, systolic, mean and diastolic blood pressure increased 29, 25, and 24% (P < 0.001), respectively, and returned to baseline values within 1 h. Maximum, mean and minimum heart rate increased 56, 52, and 49% (P < 0.001), respectively, followed by a significant decrease within 5 min; heart rate gradually increased again thereafter and remained elevated for 1 h. Analysis of heart rate variability showed increased sympathetic activity during shock with a decrease in both sympathetic and parasympathetic drive afterwards. No serious adverse effects occurred; electroconvulsive therapy did not trigger any malignant arrhythmias or ischemia. In middle-aged and elderly people free from systemic diseases, electroconvulsive therapy caused transitory increases in blood pressure and heart rate and a decrease in heart rate variability but these changes were not associated with serious adverse clinical events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 24-h heart rate variability and QT-interval adaptation was investigated in perinatally HIV-infected preschool children classified according to immunological status in order to assess autonomic function at early stages of infection. Thirty-five perinatally HIV-infected and clinically stable children (4.8 ± 0.3 years) were enrolled after approval of the study by the University Hospital Pedro Ernesto Ethics Committee and written informed parental consent was obtained. The children were classified according to peripheral CD4+ count (cells/µL) as follows: group 1, N = 11 (≥1000); group 2, N = 7 (≥500 and <1000); group 3, N = 17 (<500). Left ventricular ejection fraction (>55%), 24-h RR interval variability (RRV) indexes (NN, SDANN, SDNN index, r-MSSD) and 24-h QT and Bazett-corrected QT (QTc) were determined, and groups were matched for age, body surface area, and left ventricular ejection fraction, reducing biases in RRV. The peak differences (∆) between the highest and lowest RRV and QT indexes were extracted from nocturnal (1 am-6 am) and daytime (1 pm-6 pm) hourly assessed segments, respectively. Pearson’s correlation (r) and Kruskal-Wallis ANOVA were used to compare groups. CD4+ count correlated positively with ∆NN (r = 0.45; P = 0.003). There were no significant differences in daytime NN among groups. Nighttime SDNN index (P = 0.01), nighttime r-MSSD (P = 0.003), ∆NN (P = 0.01), ∆SDNN index (P = 0.03) and ∆r-MSSD (P = 0.004) were significantly lower in group 3 than in the other groups. Expected nighttime QTc-interval lengthening was not observed in all groups. In perinatally HIV-infected preschool children with preserved left ventricular systolic function, parasympathetic-mediated autonomic dysfunction parallels immune status, impairing both RRV and circadian QTc interval adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low incidence of cardiovascular diseases, including hypertension, in premenopausal women has led to the conclusion that ovarian hormones may have a protective effect on the cardiovascular system. We evaluated the effects of ovariectomy and/or estradiol on sympathovagal balance and heart rate variability (HRV) in female spontaneously hypertensive rats (SHR) with tachycardia and compared them to Wistar rats (12 weeks old; N = 8-12). Ovariectomy (OVX) and/or estradiol (10 µg/kg) did not affect basal arterial pressure in either rat strain, but estradiol increased basal heart rate (HR) in OVX SHR (454 ± 18 vs 377 ± 9 bpm). HR changes elicited by methylatropine and propranolol were used to evaluate the sympathovagal balance. Ovariectomy did not affect the cardiac sympathovagal balance of any group, while estradiol increased sympathetic tone in OVX SHR (120 ± 8 vs 56 ± 10 bpm) and sham-operated Wistar rats (57 ± 7 vs 28 ± 4 bpm), and decreased the parasympathetic tone only in OVX SHR (26 ± 7 vs 37 ± 5 bpm). HRV was studied in the frequency domain (Fast Fourier Transformation). Spectra of HR series were examined at low frequency (LF: 0.2-0.75 Hz) and high frequency (HF: 0.75-3 Hz) bands. The power of LF, as well as the LF/HF ratio, was not affected by ovariectomy, but estradiol increased both LF (29 ± 4 vs 18 ± 3 nu in Wistar sham-operated, 26 ± 5 vs 15 ± 3 nu in Wistar OVX, 50 ± 3 vs 38 ± 4 nu in SHR sham-operated, and 51 ± 3 vs 42 ± 3 nu in SHR OVX) and LF/HF (0.48 ± 0.08 vs 0.23 ± 0.03 nu in Wistar sham-operated, 0.41 ± 0.14 vs 0.19 ± 0.05 nu in Wistar OVX, 0.98 ± 0.11 vs 0.63 ± 0.11 nu in SHR sham-operated, and 1.10 ± 0.11 vs 0.78 ± 0.1 nu in SHR OVX). Thus, we suggest that ovariectomy did not affect the cardiac sympathovagal balance of SHR or Wistar rats, while estradiol increased the sympathetic modulation of HR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to use linear and non-linear methods to investigate cardiac autonomic modulation in healthy elderly men and women in response to a postural change from the supine to the standing position. Fourteen men (66.1 ± 3.5 years) and 10 women (65.3 ± 3.3 years) were evaluated. Beat-to-beat heart rate was recorded in the supine and standing positions. Heart rate variability was studied by spectral analysis, including both low (LFnu-cardiac sympathetic modulation (CSM) indicator) and high (HFnu-cardiac vagal modulation (CVM) indicator) frequencies in normalized units as well as the low frequency/high frequency (LF/HF) ratio. Symbolic analysis was performed using the following indexes: 0V% (CSM indicator), 1V% (CSM and CVM indicators), 2LV% (predominantly CVM indicator) and 2ULV% (CVM indicator). Shannon entropy was also calculated. Men presented higher LFnu and LF/HF ratio and lower HFnu and 1V% symbolic index (57.56, 4.14, 40.53, 45.96, respectively) than women (24.60, 0.45, 72.47, 52.69, respectively) in the supine position. Shannon entropy was higher among men (3.53) than among women (3.33) in the standing position, and also increased according to postural change in men (3.25; 3.53). During postural change, the LFnu (24.60; 49.85) and LF/HF ratio (0.45; 1.72) increased, with a concomitant decrease in HFnu (72.47; 47.56) and 2LV% (14.10; 6.95) in women. Women presented increased CSM in response to postural change and had higher CVM and lower CSM than men in the supine position. In conclusion, women in the age range studied presented a more appropriate response to a postural change than men, suggesting that cardiac autonomic modulation may be better preserved in women than in men.