92 resultados para HYDROSTATIC PRESSURES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010) in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean) and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study 387 dung beetles (Coleoptera: Scarabaeidae) were surveyed at the Serra do Japi, in the Atlantic Forest in São Paulo State, with four baited pitfall traps during the months of December, 1998, and January, 1999 during eight 24 hour cycles. A total of 30 species were identified and temporal variation in activity patterns among the species shows a specialization in the use of food resources: 9 species were classified as nocturnal and 13 as diurnal. The daily activity pattern of dung beetles does not necessarily correspond to the taxonomic classification, but is strongly related to the colouring of species, determined by predominant elytra colour: nocturnal species have 89 % more chances of being black as opposed to colourful. Black nocturnal species might have evolved as an interspecific adaptation to avoid predation (cryptic colouring). Among the colourful diurnal dung beetles, measure of body length of each species shows that development of bright colouring was more often found in medium to large species, which suggests that colouring evolved as a response to intraspecific pressures, important in agonistic encounters among males.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the interaction of ultralow oxygen concentrations (ULO) with storage temperatures and carbon dioxide partial pressures and its influence on fruit quality preservation and on the occurrence of physiological disorders in 'Royal Gala' apples. The experiment was carried out in a completely randomized design, with four replicates 25-fruit. ULO conditions (1.0 kPa O2 + 2.0 kPa CO2; 0.8 kPa O2 + 1.5 kPa CO2; 0.8 kPa O2 + 1.0 kPa CO2; 0.6 kPa O2 + 1.5 kPa CO2; and 0.6 kPa O2 + 1.0 kPa CO2) were tested at 0, 0.5 and 1.0°C, in a 5x3 factorial arrangement. Fruit quality and ripening analyses were performed after eight-month storage plus seven days of shelf-life at 20°C. Oxygen partial pressures below 0.8 kPa increased the occurrence of internal breakdown and mealiness. The best ULO condition was 1.0 kPa O2 + plus 2.0 kPa CO2 at 1.0°C. The interaction of ULO conditions and storage temperatures shows the need of increasing O2 partial pressure at higher storage temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroscopic samples of fullerene nanostructures are obtained in a modified arc furnace using the electric arc method with a Helium atmosphere at low pressures. High purity graphite rods are used as electrodes but, when drilled and the orifices filled with powders of transition metals (Fe, Co, Ni) acting as catalysts, the resulting particles are carbon nanostructures of the fullerene family, known as Single Wall Nanotubes (SWNTs). They have typical diameters of 1.4 nm, lengths up to tenths of microns and they are arranged together in bundles containing several SWNTs. Those samples are observed and analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article proposes an experimental procedure to determine the enthalpy (and entropy) of vaporization of organic liquid compounds, by the Smith-Menzies (isoteniscope) method. The values of vapor pressure at different temperatures were obtained and ΔvH (and ΔvS) were graphically determined, using the Clausius-Clapeyron equation. The results for diethyl-ether, propanone, ethanol and n-hexane are in very good agreement with those from literature. A historical and thermodynamic discussion on equations that correlates vapor pressures and temperature precedes the experimental proposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements at high temperature using liquid solutions require special cells and materials which are able to support the temperature and pressure developed inside. The constructed cell was designed to support pressures up to 20 bar, temperatures relatively high up to around 200 ºC, depending on the pressure developed inside the system. It also supports aggressive solutions since its inner wall is made of Teflon. The electrolyte has no contact with the metallic body of the cell. Then, it is supposed that this work represents a great contribution to the electrochemical studies of materials in solutions at high pressure and temperature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The climate change, the quest for sustainability and the strong environmental pressures for alternatives to traditional fossil fuels have increased the interest in the search and use of renewable energy sources. Among them stands out the biomass of charcoal coming from renewable forests, widely used as a thermal reductant in the steel industry in the detriment of the use of mineral coal coke. This study aimed to compare different operating procedures of immediate chemical analysis of charcoal. Seven essays to immediate chemical analysis were compared, spread between procedures performed by Brazilian companies and laboratories, the test described by NBR 8112 and one realized with a thermogravimetric analyzer (TGA) using the parameters of the NBR 8112. There were significant differences in the volatiles matter content and consequently in the fixed carbon contents found. The differences between the procedures and the NBR 8112 were caused by an excess burning time, a mass sample above or below the standard or inappropriate container used for burning. It observed that the TGA appraisal of the volatiles content must be carried out with a burning time equal to 2 minutes to obtain results similar to those of the NBR 8112 norm. Moreover, the ash content values were statistically identical and the particles size did not influence the differences between means.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When using appropriate inflation pressures and load capacity (ballast), it may obtain a higher yield and prolongation of the life of the tire, besides it may minimize the problems of loss of traction, increased slippage and fuel consumption. This study aimed to evaluate the fuel consumption of a tractor operating with new and worn tires in three conditions of ballasting and three inflation pressures, when driving on compacted soil with vegetation cover. The experiment was conducted at the experimental unit from the Department of Animal Science, Federal University of Lavras, state of Minas Gerais, Brazil, in an agricultural soil compacted by cattle trampling and with vegetation cover. It was used a tractor 4x2 with front wheel assist, of a 65.62 kW engine power. The tires were of R1 type, diagonal (front: 12.4 to 24; and rear: 18.4 to 30), the average height of the clutches of the new tires were 0.3 and 0.35 m for front and rear tires, respectively, and for the worn tires were 0.018 and 0.0045 m, for the front and the rear tires, respectively. The results showed advantages for the tractor equipped with new tires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the uniformity of distribution coefficient (UDC) and coefficient of variation (CV) of a familiar set of irrigation, classifying it the ASAE standard. The irrigation and fertigation are determined by two methods the KELLER & KARMELI and DENÍCULI . The two experiments were subjected to varying pressures: 12, 14, 16 and 18 kPa, in a completely randomized design of twenty samples composed of flows with three replications. Urea, potassium chloride (KCl) and ammonium phosphate (MAP) were the elements used for fertigation. The system consisted of a 200 L tank, which supplied another container of 30 L, it was moved vertically to control the pressure. The data was statistically compared between treatments for each methodology. In fertigation the best pressure was 16 kPa and was classified as "excellent" for UDC (91.03%) and "marginal" for C.V. (7.47%). For the irrigation treatment, the best pressure was 16 kPa rated "excellent" for UDC (91.2%) and "marginal" for C.V. (7.68%). The DENÍCULI et al. (1980) methodology proved more reliable for the evaluation of drip systems. It was observed that this set has good uniformity of distribution, but with great variability in flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tire inflation pressure, among other factors, determines the efficiency in which a tractor can exert traction. It was studied the effect of using two tire inflation pressures, 110.4 kPa in the front and rear wheels, 124.2 kPa in the front wheel and 138 kPa in the rear wheels, the energetic efficiency of an agricultural tractor of 147 kW of engine power, in the displacement speed of 6.0 km.h-1, on track with firm surface, with the tractor engine speed of 2000 rpm. For each condition of the tire pressure, the tested tractor was subjected to constant forces in the drawbar of 45 kN and 50 kN, covering 30 meters. It was used a randomized complete block with a 2x2 factorial arrangement (tire pressure and drawbar power) with four replications, totaling 16 experimental units. Data were subjected to analysis of variance, using the Tukey test at 5% probability for comparison averages. The lowest hourly and specific fuel consumption, the lowest slippage of the wheelsets and the highest efficiency in the drawbar was obtained with the tire inflation pressure of 110.4 kPa in the front and rear tires of the tractor, highlighting that lower pressures improve energetic and operational performance of the tractor.