50 resultados para Genetic Variants
Resumo:
Although the main transmitters of rabies in Brazil are dogs and vampire bats, the role of other species such as insectivorous and frugivorous bats deserves special attention, as the rabies virus has been isolated from 36 bat species. This study describes the first isolation of the rabies virus from the insectivorous bat Eumops perotis. The infected animal was found in the city of Ribeirão Preto, São Paulo. The virus was identified by immunofluorescence antibody test (FAT) in central nervous system (CNS) samples, and the isolation was carried out in N2A cell culture and adult mice. The sample was submitted to antigenic typing using a panel of monoclonal antibodies (CDC/Atlanta/USA). The DNA sequence of the nucleoprotein gene located between nucleotides 102 and 1385 was aligned with homologous sequences from GenBank using the CLUSTAL/W method, and the alignment was used to build a neighbor-joining distance-based phylogenetic tree with the K-2-P model. CNS was negative by FAT, and only one mouse died after inoculation with a suspension from the bat's CNS. Antigenic typing gave a result that was not compatible with the patterns defined by the panel. Phylogenetic analysis showed that the virus isolated segregated into the same cluster related to other viruses isolated from insectivorous bats belonging to genus Nyctinomops ssp. (98.8% nucleotide identity with each other).
Resumo:
The Triatominae (Hemiptera:Reduviidae) contains the principal and potential Chagas disease vectors present in Mexico, Central America and South America. Triatoma flavida and T. bruneri are Cuban species. These species are closely related according to morphology and were considered synonyms until 1981, when they were separated on the grounds of external characters of the body and the morphology of male genitalia. The present study seeks to analyze genetic polymorphism of T. flavida and T. bruneri populations using RAPD techniques, and to assess the genetic relationship between these species. Ten random primers were used to evaluate the genetic variability among species using RAPD-PCR. The genetic flow among them was calculated. The dendrogram based on calculated Jaccard distances showed two clearly distinguishable clusters which coincided with the studied species. Within each species, moderate genetic differentiation (Fst 0.05-0.15) and migration rates (N > 1) were found among populations, that reveal gene flow and genetic homogeneity. Between species, the Fst value showed a high genetic differentiation and the migration rate was insufficient to maintain genetic homogeneity, and confirmed the absence of gene flow between them. Our results confirm the genetic variability among T. flavida and T. bruneri species.
Resumo:
The objective of this study is to identify subtypes of Human Immunodeficiency Virus type 1 (HIV-1) and to analyze the presence of mutations associated to antiretroviral resistance in the protease (PR) and reverse transcriptase (RT) regions from 48 HIV-1 positive treatment naïve patients from an outpatient clinic in Maringá, Paraná, Brazil. Sequencing was conducted using PR, partial RT and group-specific antigen gene (gag) nested PCR products from retrotranscribed RNA. Transmitted resistance was determined according to the Surveillance Drug Resistance Mutation List (SDRM) algorithm. Phylogenetic and SimPlot analysis of concatenated genetic segments classified sequences as subtype B 19/48 (39.6%), subtype C 12/48 (25%), subtype F 4/48 (8.3%), with 13/48 (27.1%) recombinant forms. Most recombinant forms were B mosaics (B/F 12.5%, B/C 10.4%), with one C/F (2.1%) and one complex B/C/F mosaic (2.1%). Low levels of transmitted resistance were found in this study, 2/48 (2.1% to NRTIs and 2.1% for PI). This preliminary data may subsidize the monitoring of the HIV evolution in the region.
Resumo:
Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.