152 resultados para Gaussian type quadrature formula for sums


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the report of a five-month-old child presenting clinical evidence of Pompe's disease: severe hypotonicity, hyporeflexia and congestive heart failure. The ECG showed a short PR interval, the chest radiography disclosed marked cardiomegaly, and the echocardiogram revealed marked left ventricular hypertrophy - the most typical finding of this disease. A skeletal muscle biopsy led to final diagnosis, because in the histopathologic study marked increased glycogen accumulation was evident. Death occurred two months after symptom onset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the utility of B-type natriuretic peptide (BNP) in the diagnosis of congestive heart failure (CHF) in patients presenting with dyspnea to an emergency department (ED). METHODS: Seventy patients presenting with dyspnea to an ED from April to July 2001 were included in the study. Mean age was 72±16 years and 33 (47%) were male. BNP was measured in all patients at the moment of admission to the ED. Emergency-care physicians, blinded to BNP values, were required to assign a probable initial diagnosis. A cardiologist retrospectively reviewed the data (blinded to BNP measurements) and assigned a definite diagnosis, which was considered the gold standard for assessing the diagnostic performance of BNP. RESULTS: The mean BNP concentration was higher in patients with CHF (n=36) than in those with other diagnoses (990±550 vs 80±67 pg/mL, p<0.0001). Patients with systolic dysfunction had higher BNP levels than those with preserved systolic function (1,180±641 vs 753±437 pg/mL, p=0.03). At a blood concentration of 200 pg/mL, BNP showed a sensitivity of 100%, specificity of 97.1%, positive predictive value of 97.3%, and negative predictive value of 100%. The application of BNP could have potentially corrected all 16 cases in which the diagnosis was missed by the emergency department physician. CONCLUSION: BNP measurement is a useful tool in the diagnosis of CHF in patients presenting to the ED with dyspnea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Resistance exercise effects on cardiovascular parameters are not consistent. Objectives: The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Methods: Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. Results: A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Conclusions: Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Antihypertensive drugs are used to control blood pressure (BP) and reduce macro- and microvascular complications in hypertensive patients with diabetes. Objectives: The present study aimed to compare the functional vascular changes in hypertensive patients with type 2 diabetes mellitus after 6 weeks of treatment with amlodipine or losartan. Methods: Patients with a previous diagnosis of hypertension and type 2 diabetes mellitus were randomly divided into 2 groups and evaluated after 6 weeks of treatment with amlodipine (5 mg/day) or losartan (100 mg/day). Patient evaluation included BP measurement, ambulatory BP monitoring, and assessment of vascular parameters using applanation tonometry, pulse wave velocity (PWV), and flow-mediated dilation (FMD) of the brachial artery. Results: A total of 42 patients were evaluated (21 in each group), with a predominance of women (71%) in both groups. The mean age of the patients in both groups was similar (amlodipine group: 54.9 ± 4.5 years; losartan group: 54.0 ± 6.9 years), with no significant difference in the mean BP [amlodipine group: 145 ± 14 mmHg (systolic) and 84 ± 8 mmHg (diastolic); losartan group: 153 ± 19 mmHg (systolic) and 90 ± 9 mmHg (diastolic)]. The augmentation index (30% ± 9% and 36% ± 8%, p = 0.025) and augmentation pressure (16 ± 6 mmHg and 20 ± 8 mmHg, p = 0.045) were lower in the amlodipine group when compared with the losartan group. PWV and FMD were similar in both groups. Conclusions: Hypertensive patients with type 2 diabetes mellitus treated with amlodipine exhibited an improved pattern of pulse wave reflection in comparison with those treated with losartan. However, the use of losartan may be associated with independent vascular reactivity to the pressor effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistant hypertension (RHTN) is a multifactorial disease characterized by blood pressure (BP) levels above goal (140/90 mmHg) in spite of the concurrent use of three or more antihypertensive drugs of different classes. Moreover, it is well known that RHTN subjects have high prevalence of left ventricular diastolic dysfunction (LVDD), which leads to increased risk of heart failure progression. This review gathers data from studies evaluating the effects of phosphodiesterase-5 (PDE-5) inhibitors (administration of acute sildenafil and short-term tadalafil) on diastolic function, biochemical and hemodynamic parameters in patients with RHTN. Acute study with sildenafil treatment found that inhibition of PDE-5 improved hemodynamic parameters and diastolic relaxation. In addition, short-term study with the use of tadalafil demonstrated improvement of LVDD, cGMP and BNP-32 levels, regardless of BP reduction. No endothelial function changes were observed in the studies. The findings of acute and short-term studies revealed potential therapeutic effects of IPDE-5 drugs on LVDD in RHTN patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is destinated to prove that the castes : workers and queens, in Melipona bees are due to genetic factors and not to differences in food. 2) Material used: Hives of Melipona quadri-fasciata anthidioides (Lep. 1836), M. schenki schenki (Gribodo, 1893), M. fasciata rufiventris (Lep. 1836), M. quadri-fasciata vicina (Lep. 1836), M. marginata marginata (Lep. 1836), Apis mellifera (L. 1758). 3) It should be pointed out that in Melipona bees there are no royal cells for the queens, but all the cells are of the same size independently of being destinated for workers, queens or drones. The numerous queens which are born are killed soon after emerging from their cells. 4) Changes of feeding in quality and in quantity caused no variation of castes. The only variable factor is the size, which becomes bigger when the bee is well nourished. 5) The offsprings of 5 hives were examined : 3 of M. quadri-fasciata anthidioides (n.o 1, n.o 2 and n.o 3), 1 of M. quadri-fasciata vicina (n.o 4) and 1 of M. marginata marginata (n.o 5). Combs of about 40 cells were taken into laboratory and the type of bee registered immediately after emerging. The results of the counts were: BOX COMB WORKER QUEEN PERCENTAGE Σ X2 to 12,5% Nº 1 1th 69 8 10,4% 0, 3139 " 1 2nd 144 18 11,1% 0, 2856 " 2 1th 52 8 13,3% 0, 0384 " 3 1th 45 10 18,2% 1, 6736 " 4 1th 56 4 6,7% 1, 8686 " 4 2nd 29 4 12,1% 0,00432 Σ X2 to 25% " 5 1th 34 14 29,2% 0,44444 "5 2nd 83 27 24,5% 0, 0121 In the 4 first boxes there is a percentage of 11,63% queens and in the last there is a percentage of 25,95%. 6) These percentages are very near two genetical ratios: 12,5% or 7:1, and 25% or 3:1, which correspond to a trifactorial and a bifactorial back-cross. Carrying out a X² test no significant deviations were found ( X² to 12,5% and to 25% and table 1 to 4). 7) We suppose that the formula for the queen in the first case (11,65%) is: AaBbCc. Since the Melipona bees are arrhenotokous hymenopteres, the drones are haploid and may have any one of the following eight formulas, corresponding to the gonic segregation of the queem : ABC, ABc, Abc, Abc, AbC, aBC, aBc, abC, abc. Anyone combination of these males with the queen will give a segregation of 7 workers to 1 queen, since there is always only one triple heterozygote among the eight possible segregates (table 5). 8) In order to explain the second case, it is suffient to assume that in this species there are only two pairs of factors, the queen being the double heterozygote : AaBb, while the drones may have any one of the following constitutions: AB, Ab, aB and ab. Workers are again all diploids which are homozygous for one or both factors, for instance: AABB, AABb, AaBB, aaBb, AAbb, etc. (table 6). 9) It is suggested that the genus Melipona is an intermediary type between the solitary bees, where all females are fertile independently of their feeding, and the genera Apis and Trigona, where without special feeding all females are born sterile, while only specially fed females develop into fertile queens. 10) No speculations are put forward with regards to the evolutionary mechanism which may have been responsible for the development of the genetical determination of castes in Melipona, since it seems advisable point to extend the studies to other insects with complicated caste systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresenta o autor uma dedução nova, através da projeção estereográfica, da fórmula de Miller em que são interessadas faces em zona.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type material of Phasmatodea deposited in Brazilian museums and institutions is listed for the first time. New synonyms are proposed: Phibalosoma paulense Toledo Piza, 1938, Phibalosoma rochai Toledo Piza, 1938, Bacteria tuberculata Toledo Piza, 1938 and Bacteria tuberculata var. argentina Toledo Piza, 1938 are junior synonyms of Cladomorphus phyllinus (Gray, 1835). Nineteen new combinations are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT In order to solve the affinities of the species of Isotes Weise, 1922, a detailed morphological comparative study was carried out based on type-species of Isotes and its junior synonym,Synbrotica Bechyné, 1956. Isotes tetraspilota (Baly, 1865) and Isotes borrei (Baly, 1889) had their morphology of mouthparts, endosternites, wings and both male and female genitalia compared by the first time. A new synonymy is established between Isotes borrei (Baly, 1889) and Isotes crucigera (Weise, 1916) syn. nov. based on external and genitalia morphology. New structures for Section Diabroticites Chapuis, 1875 are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Pesquisamos a atividade antibacteriana em 14 amostras de Aspergillus niger da National Collection of Type Cultures. 2. Em meio de Raulin e Mosseray, sete amostras apresentaram atividade total, nunca superior a 1:10, contra Staphylococcus aureus nº 553, sendo que as amostras 1.161 e 2.390 permaneceram ativas por mais de 40 dias. 3. A utilização do meio de Czapek-Dox com 5% de "corn-steep" não melhorou os resultados obtidos com o meio de Raulin e Mosseray. 4. No meio de levedo peptonado, todas as amostras apresentaram-se inativas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyla claresignata Lutz & Lutz, 1939, is a large species apparently not closely allied to the other known Brazilian hylas. It is characterized by the very small tympanum; the head is short and the snout rounded; the legs are long, the hands and feet unusually large, the latter extensively webbbed. The specific name is derived from the insular, irregular, or roughly triangular, dark spots, with a light halo, found mostly in the dorso-lateral region and on the legs. It belongs to the rain-forest fauna of the Marítime Range. The adult is a bromeliad-dweller and the tadpole rhyacophilous. DESCRIPTION. Vomerine teeth in two separate, oblique, groups, behind the large choanae, parallel to the posterior half of their inner border. Tongue entire, short, very broad and hardly free behind. Snout short, rounded, with distinct canthus rostralis and gradually sloping loreal region. Eye very large and prominent, its horizontal diameter almost equal to the distance between its anterior corner and the tip of the snout. Tympanum very small, less than one third of the diameter of the eye, but distinct, partly covered by a short, heavy ridge. Lateral fingers less than one third webbed; fourth finger slightly longer than the second, just reaching the base of the disk of the third; subarticular tubercles well developed; an angular pollex rudiment, more noticeable in the males. Toes almost completely webbed, the edge of the web inserted at the base of the disk on the third and the fifth; an inner metatarsal tubercle. Skin smooth above, granular beneath, on the throat minutely so. No dermal appendage on the hell. Habit robust, head broader than long, body rather heavy, slightly narrowed in the postaxillary region. Legs long, the tibiotarsal articulation reaching beyond the tip of the snout when adpressed. Type (female): 61 mm. (Fig. 1.) DIAGNOSIS of TADPOLE (by G. Orton). "A large specialized, mountain-stream tadpole, with wide head an elongated, flattened snout, greatly enlarged lips and high tooth formula. Eyes dorsal. Spiracle sinistral, projecting, situated far back on side. Anus dextral. Tooth formula 8/12 to 9/14 in fully grown larvae. Tail with a prominent, vertical dark band across musculature and fins; a second concentration of dark pigment near tip of tail, may or may not form a similar but narrower band. Maximum known total length: 60mm.; head and body length 25mm. (Figs. 6 e 7). For further details see Lutz & Lutz, 1939 and Lutz B. & Orton G. 1946.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new tick, Amblyomma parkeri, n. sp., is described as a parasite of Coendu sp. from S. Paulo, Brazil. Female holotype, nymph and larva are described (Figs. 2 e 3). The n. sp. differs completly from Koch's species Amblyomma longirostre, the common parasite of the Erethizotidae. Standard data for measures of the female dorsal scutum ixodidae are proposed as follows (fig. 1): PA = Antero-posterior; PB = Postero-basal; PM = Postero-median; TT = Transversal; OO = Inter-ocular; OT= Occulo-transversal; SS = Inter-scapular; CC = Cervical; PT = Postero-transversal; ST = Scapulo-transversal; NPT = Normal to the postero-transversal; NST = Normal to the scapulo-transversal. In the female holotype the standard data are as follows: PA = 2.00 mm; PB = 2.26 mm; PM = 1.10 mm; TT = 2.20 mm; OO = 2.26 mm; SS = 0,84 mm; CC = 0.63 mm; SC = 0.12 mm; NPT = 0.20mm; STN = 0.1 mm. Peritrema 0.80 x 0.42 mm with a narrow postero-internal angle and a large, elongated macula. Coxa I with two short spines and all other coxae with only one shorter spine, shortest in coxa IV. Hypostoma spatulated with formula 3/3. Gnathosoma 1.42 mm long and basis 0.63 mm long by 0.84 greatest wide. Palpi with smoth external surface, 1.00 mm long. Type lot No. 4458 from Cotia, S. Paulo, Brazil; in the acarological collection of the Escola Paulista de Medicina, S. Paulo. Ixodes didelphidis, n. sp., differing from Ixodes loricatus Neumann by the shape of the peritremata (figs. 4 a 5) of the male and female and by the number of the punctations in this organ is described form Didelphidae, Muridae and Cavidae. Twenty eight lots were obtained from Anápolis, Goiás, Brasil, where I. loricatus is subtituded by the n. sp. under description. Comparison with NEUMANN'S types of I. loricatus was possible through the courtesy of Prof. A. BRIZARD from Toulouse, who kindly loaned NEUMANN'S material. Female cotypes N° 40 and male allotype N° 531 in the Collection of Ixodidae of the Oswaldo Cruz Institute.