114 resultados para Freundlich isotherms
Resumo:
Os objetivos deste trabalho foram verificar a adsorção de nitrato e identificar as propriedades do solo que mais influenciam este fenômeno, em um Latossolo Vermelho-Escuro, com 56% de argila, em Planaltina, DF. Em 1996 foram coletadas amostras de solo nas profundidades de 0-20, 20-40, 40-80, 80-100 cm, de um experimento com cinco anos de duração, em uma área de cerrado típico e em duas áreas cultivadas com soja e milho, onde o solo apresentava inversão de carga em profundidade. Também foram coletadas amostras em um solo sob cerradão, com carga elétrica líquida negativa em profundidade. A relação entre nitrato adsorvido e nitrato na solução foi descrita pela equação de Freundlich e as relações entre o nitrato adsorvido e algumas propriedades físico-químicas do solo foram estudadas por meio de regressões múltiplas. O nitrato adsorvido aumentou com a profundidade em todos os tratamentos. Esta adsorção foi maior nos solos sob cerrado e cerradão. O deltapH não afetou a adsorção de nitrato. A correlação entre nitrato adsorvido, matéria orgânica e sulfato extraível foi negativa. A adsorção de nitrato aumentou com a redução da matéria orgânica em profundidade e com a redução de sulfato extraível.
Resumo:
O objetivo deste trabalho foi avaliar a adsorção de B em quatro solos de várzea da região de Lavras, MG, por meio dos parâmetros das isotermas de Langmuir e Freundlich, no período de outubro a novembro de 1998. Amostraram-se solos Aluvial, Glei Pouco Húmico, Glei Húmico, e Orgânico artificialmente drenado, coletados na camada de 0-20 cm e peneirados para 2 mm. Amostras com e sem calagem foram incubadas durante 30 dias. Duplicatas de 4,0 g de solo de cada classe foram acondicionadas em tubos de polietileno com oito diferentes doses de B (0, 2, 4, 8, 12, 16, 24 e 32 mig mL-1) preparadas em CaCl2.2H2O 0,01 mol L-1, com ácido bórico como fonte. Os teores de B na solução de equilíbrio foram determinados pelo método da Azometina-H. Os resultados mostraram que alto teor de matéria orgânica confere ao solo Glei Húmico maior capacidade de adsorver boro. A matéria orgânica, a superfície específica, caulinita e alumínio trocável foram os atributos dos solos que se correlacionaram diretamente com a capacidade máxima de adsorção de B (CMAB). A calagem proporcionou diminuição da CMAB em todos os solos.
Resumo:
O objetivo deste trabalho foi avaliar o comportamento adsortivo do nitrato em relação às modificações da carga líquida do solo decorrentes da adição de ácidos, bases (carbonatos), fosfato e sulfato. Foram utilizadas amostras dos horizontes A e B de dois solos: Latossolo Vermelho acriférrico e Nitossolo Vermelho eutrófico. Para verificar o comportamento adsortivo do nitrato em relação aos tratamentos, ajustaram-se isotermas de adsorção de Freundlich (exponencial). O modelo de Freundlich descreve satisfatoriamente a adsorção do nitrato ao solo em todos os tratamentos. Existe correlação significativa entre o pH e a carga líquida dos solos, considerando-se os tratamentos aplicados ao horizonte B do Latossolo Vermelho. A adsorção do nitrato nos horizontes A e B comporta-se de maneira diferenciada nos dois solos utilizados. No Latossolo Vermelho, a adsorção é maior no horizonte subsuperficial em relação ao superficial. No Nitossolo Vermelho, a adsorção é maior no horizonte superficial em relação ao subsuperficial. As adições de sulfato e de fosfato ao solo resultam em pequena diminuição na adsorção de nitrato em relação ao observado no horizonte B do Latossolo Vermelho acriférrico.
Resumo:
The objective of this work was to assess the effects of pH and ionic strength upon zinc adsorption, in three highly weathered variable charge soils. Adsorption isotherms were elaborated from batch adsorption experiments, with increasing Zn concentrations (0-80 mg L-1), and adsorption envelopes were constructed through soil samples reactions with 0.01, 0.1 and 1 mol L-1 Ca(NO3)2 solutions containing 5 mg L-1 of Zn, with an increasing pH value from 3 to 8. Driving force of reaction was quantified by Gibbs free energy and separation factor. Isotherms were C-, H- and L-type and experimental results were fitted to nonlinear Langmuir model. Maximum adsorption ranged from 59-810 mg kg-1, and Zn affinity was greater in subsoil (0.13-0.81 L kg-1) than in the topsoil samples (0.01-0.34 L kg-1). Zinc adsorption was favorable and spontaneous, and showed sharply increase (20-90%) in the 4-6 pH range. No effect of ionic strength was observed at pH values below 5, because specific adsorption mechanisms predominated in the 3-5 pH range. Above pH 5, and in subsoil samples, Zn was adsorbed by electrostatic mechanisms, since ionic strength effect was observed. Despite depth and ionic strength effects, Zn adsorption depends mainly on the pH.
Resumo:
O objetivo deste trabalho foi determinar a capacidade de adsorção de cádmio e de chumbo e avaliar a influência das propriedades dos solos sobre os parâmetros de adsorção desses elementos em solos tropicais altamente intemperizados. Foram utilizados quatro Latossolos e um Argissolo. Amostras de 1 g de solo foram agitadas por 16 horas, com soluções de CaCl2 0,01 mol L-1, às quais foram adicionadas 0, 10, 20, 30, 40, 60 e 80 µg mL-1 de cádmio e 0, 10, 20, 40, 60, 80, 100 e 120 µg mL-1 de chumbo na forma de nitrato. As quantidades adsorvidas foram determinadas mediante análise dos elementos no sobrenadante, e os dados foram ajustados às isotermas de Langmuir e de Freundlich. Os resultados experimentais ajustaram-se aos modelos estudados. A adsorção máxima de cádmio variou de 136 a 1.604 µg g-1 e a de chumbo, de 988 a 1.660 µg g-1. As energias de ligação variaram de 0,0036 a 0,0403 µg mL-1 e de 0,0282 a 1,0425 µg mL-1 para cádmio e chumbo, respectivamente. Os atributos dos solos correlacionados à adsorção de cádmio foram o pH e a capacidade de troca de cátions, e à adsorção de chumbo foram o pH e os níveis de óxidos de ferro e de alumínio.
Resumo:
In environmental studies it is necessary to know the adsorption behavior of metals by soils, since the unfavorable effects of heavy metals and even the micronutrients at high concentrations in the environment are related to these adsorbents' ability to immobilize them. A sample of a humic yellow red oxisol from Araponga region in the State of Minas Gerais, Brazil, was used to verify the adsorption behavior of Cu2+ ions in this substrate. The mathematical model described by Langmuir's adsorption equation in its linearized form was applied and the values of the maximum capacity b and those of the constant related to the bonding energy a were obtained. Aliquots of copper nitrate solutions containing several concentrations of this metal were added to soil samples, the pH being predetermined for developing the adsorption experiments. The chemical and physical characterization of soil sample were performed by determining the organic carbon, nitrogen and phosphorus concentrations, cation exchange capacity (CEC), pH, concentration of metals (Al, Fe, K, Mg, Ca, Zn, Cu, Ni, Cr, Co, Pb, and Cd), granulometric analysis and X-ray diffraction. Langmuir isotherms presented two distinct adsorption regions at both pH 4 and pH 5, showing that the adsorptive phenomenon occurs in two distinct stages. The adsorption sites for the lower part presented greater bonding energy and low adsorption capacity compared with the adsorption sites of the part of the curve corresponding to higher Cu concentrations in the equilibrating solution.
Resumo:
The adsorption of triadimenol (1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol) on soil samples with varying contents of organic matter was studied. The adsorption was described by means of the Freundlich's isoterm. An increase in the capacity of adsorption was observed as the content of organic carbon in the matrix increased. That effect was observed when removing the organic matter from the soil, when adding a urban waste compost to the soil sample as well as to the soil sample without organic matter, and also after leaving proportions of urban waste compost incubated in these matrices for a period of 120 days. The results show that the adsorption of the triadimenol in the soil is dependent of its content of organic carbon.
Resumo:
In this study, the preparation of the xerogel anilinepropylsilica is reported. The ability of the xerogel for extracting Al(III), Cr(III) and Fe(III) from ethanol was investigated at 25 ºC. The xerogel adsorption capacities were obtained from the adsorption isotherms by using the batch method. Flame atomic absorption spectrometry (FAAS) was used to estimate the concentration of metal ions in solution. The adsorption affinity follows the series Cr(III) > Fe(III) > Al(III) and the maximum adsorption capacities of the metal ions were 0.61, 0.52 and 0.43 mmol g-1, respectively.
Resumo:
Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.
Resumo:
Aluminum oxide was dispersed on a commercial silica gel surface, using successive grafting reactions. The reaction products were characterized by N2 adsorption-desorption isotherms, scanning electron microscopy and infrared spectroscopy. The progressive incorporation of aluminum, up to 5.5% (w/w), does not produce agglomeration of alumina, since changes in the original pore size distribution of the silica matrix were not observed. The aluminum oxide covers homogeneously the silica surface.
Resumo:
Mercury (II) adsorption studies in top soils (top 10 cm) from the Rio Negro basin show this process depends strongly on some selected parameters of the aqueous phase in contact with the soils. Maximum adsorption occurred in the pH range 3.0-5.0 (>90%). Dissolved organic matter shows an inhibitory effect on the availability of Hg (II) to be adsorbed by the soils, whereas a higher chloride content of the solution resulted in a lower adsorption of Hg (II) at pH 5.0. Soils with higher organic matter content were less affected by changes in the salinity. An increase in the initial Hg (II) concentration increased the amount of Hg (II) adsorbed by the soil and decreased the time needed to reach equilibrium. A Freundlich isotherm provided a good model for Hg (II) adsorption in the two types of soil studied. The kinetics of Hg (II) adsorption on Amazonian soils showed to be very fast and followed pseudo-second order kinetics. An environmental implication of these results is discussed under the real scenario present in the Negro River basin, where acidic waters are in contact with a soil naturally rich in mercury.
Resumo:
The root exudates produced by sorghum contain a biologically active constituent known as sorgoleone. The behavior of sorgoleone in a Red-Yellow Latosol was studied. The sorption model of sorgoleone in soil was better adjusted to the Freundlich equation, through the coefficients Kf (capacity of sorption) and 1/n (linearity of the isotherm). The persistence of sorgoleone in soil and its possible degradation were also evaluated by monitoring their residues in the soil along the time. Recovery rate of sorgoleone from the soil reached 93% after 24h. It was verified that sorgoleone is strongly sorbed in the soil and its half-life is 10 days, under the experimental conditions. The presence of sorgoleone or its metabolites was not detected in the soil after 60 days.
Resumo:
This paper discusses fundamental concepts for the characterization of Langmuir monolayers and Langmuir-Blodgett (LB) films, with emphasis on investigations of material properties at the molecular level. By way of illustration, results for phospholipid monolayers interacting with the drug dipyridamole are highlighted. These results were obtained with several techniques, including in situ grazing incidence X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, fluorescence microscopy, in addition to surface pressure and surface potential isotherms. Also mentioned are the difficulties in producing Langmuir and LB films from macromolecules, and how molecular-level interactions in mixed polymer LB films can be exploited in sensors.
Resumo:
In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.
Resumo:
Very often hydrochloric acid is employed in acidification operations aiming to dissolve the mineral matrix in petroleum wheel operations, which always require intense use of corrosion inhibitors. This work presents an evaluation of common indicators, phenolfthaleine, fluorescein, methylene blue, alizarine S and methyl orange, as corrosion inhibitors for carbon steel in HCl 15% w/v at temperatures of 26, 40 and 60 ºC. Fluorescein and methyl orange show excelent corrosion inhibition efficiencies at 26 ºC; however at 60 ºC only fluorescein shows good corrosion inhibition when employed with alcohol and/or formaldehyde. For the fluorescein 1% w/v + formaldehyde 0.6% w/v mixture we present polarization and impedance curves and adsorption isotherms.