138 resultados para Flowering


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB) during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1) Black oat straw (Avena strigosa Schreb.); 2) Rye straw (Secale cereale L.); 3) Common vetch straw (Vicia sativa L.). The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB) were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information about nutrient extraction and exportation by crops, as well as the periods of highest nutrient demand is important for an adequate fertilization management. However, there are no studies on the nutrient uptake of short-stature hybrid castor bean. Therefore, the purpose of this study was to evaluate nutrient extraction and exportation by short-stature castor bean hybrid Lyra, in the spring-summer and fall-winter growing seasons. The experiments were conducted in the 2005/2006 spring-summer and 2006 fall-winter growing seasons on an Oxisol, in Botucatu, SP, in a randomized block design, with four replications. The plots consisted of plant samplings, which occurred 17, 31, 45, 59, 73, 97 and 120 days after emergence (DAE) in the spring-summer and 17, 31, 45, 59, 80, 100 and 120 DAE in fall-winter growing season. The growth of hybrid Lyra was slow and nutrient uptake lowest between emergence and the beginning of flowering. The period of highest dry matter (DM) accumulation rates and highest nutrient demand were observed 40 to 80 DAE, in both growing seasons. The order of nutrient extraction by the plants in the spring-summer growing season was: N>K>Ca>Mg>S>P>Fe>Mn>Zn>B>Cu>Mo. In fall-winter, S was more absorbed than Mg. Seed yield was higher in the spring-summer (2.995 kg ha-1), but nutrient extraction and exportation per ton of seed were similar in both growing seasons. Around 58 % of N and 84 % of P, and approximately half of the S and B absorbed throughout the cycle were exported with the seeds. However, most of the other nutrients accumulated in the plants returned to the soil in plant residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Diagnosis and Recommendation Integrated System (DRIS) can improve interpretations of leaf analysis to determine the nutrient status. Diagnoses by this method require DRIS norms, which are however not known for oil content of soybean seeds. The aims of this study were to establish and test the DRIS method for oil content of soybean seed (maturity group II cultivars). Soybean leaves (207 samples) in the full flowering stage were analyzed for macro and micro-nutrients, and the DRIS was applied to assess the relationship between nutrient ratios and the seed oil content. Samples from experimental and farm field sites of the southernmost Brazilian state Rio Grande do Sul (28° - 29° southern latitude; 52° -53° western longitude) were assessed in two growing seasons (2007/2008 and 2008/2009). The DRIS norms related to seed oil content differed between the studied years. A unique DRIS norm was established for seed oil content higher than 18.68 % based on data of the 2007/2008 growing season. Higher DRIS indices of B, Ca, Mg and S were associated with a higher oil content, while the opposite was found for K, N and P. The DRIS can be used to evaluate the leaf nutrient status of soybean to improve the seed oil content of the crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N) fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF), based on optical spectrometry crop sensors, could increase the N use efficiency (NUE). The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF). With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE) and agronomic efficiency of N (NAE) compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The period between anthesis and fruit ripening varies according to the Conilon coffee (Coffea canephora) genotype. Therefore, the time of the nutritional requirements for fruit formation may differ, depending on the formation phase and the genotype, and may directly affect split application of fertilizer. The aim of this study was to quantify the accumulation of dry matter and N, P, K, Ca, Mg and S at several stages in the fruit of the Conilon coffee genotype with different ripening cycles, which may suggest the need for split application of fertilizer in coffee. The experiment was carried out in the municipality of Nova Venecia, Espírito Santo, Brazil, throughout the reproductive cycle. The treatments were composed of four coffee genotypes with different ripening cycles. A completely randomised experimental design was used. with five replicates. Plagiotropic branches were harvested from flowering to fruit ripening at 28-day intervals to determine the dry matter of the fruits and the concentration and accumulation of the nutrients they contained. The behavior of dry matter and macronutrient accumulation during the study period was similar and increasing, but it differed among genotypes sampled in the same season. Early genotypes exhibited a higher speed of dry matter and nutrient accumulation. Split application of fertilizer should differ among coffee genotypes with different ripening cycles (early, intermediate, late and very late).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa) and hairy vetch (Vicia villosa) residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg) and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content) analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS), in vines rows with plastic shelter (VPRS), and in the between-row areas (BR). We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca) in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the flowering of the grapevines, which is one of the phenological stages of greatest demand for nutrients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The number of days between anthesis and maturation of conilon coffee berries varies according to the genotype. Thus, it is believed that periods of greater nutrient demand for fruit formation also vary according to the genotype, directly influencing fertilizer management. The goal of this study was to establish accumulation curves for the micronutrients boron, copper, iron, manganese, and zinc in conilon coffee trees with different maturation cycles. The experiment was conducted in Nova Venécia, State of Espírito Santo, Brazil, during the reproductive cycle of the 2010/2011 crop year. Four coffee genotypes with different maturation cycles (early, intermediate, late, and super-late) were studied. A completely randomized experimental design was used with five replications. The treatments correspond to the accumulation of B, Cu, Fe, Mn, and Zn in the berries every 28 days in the period from flowering to harvest. The early, intermediate, and late genotypes accumulated Fe, Cu, and Mn in a similar manner, with sigmoid curves, whereas the super-late genotype accumulated these nutrients exponentially. Zn was accumulated by all four genotypes following a sigmoid curve. The early, intermediate, and late genotypes accumulated B linearly, whereas the super-late genotype accumulated B following a sigmoid curve. The maturation cycle of the genotype must be taken into account to apply the correct rate of micronutrient fertilization in coffee plantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was conducted at the Universidade Estadual de Londrina (UEL), in Londrina, State of Paraná, Brazil, with the goal to study food-type soybean (Glycine max (L.) Merrill) genotypes performance for use in cultivation or crosses. A total of 104 genotypes were analyzed: 88 were food-type with large seeds, eight were food-type with small seeds, and eight-grain types adapted cultivars. The experimental plan was in randomized complete block design with four replications, and 12 traits of agronomic importance were considered. Genetic diversity was observed in the food-type germplasm. There were some genotypes with high yield adapted to a normal period of sowing. Soybean genetic improvement programs for direct human consumption in Brazil, either by means of Asiatic pure lines or by means of the incorporation of genes for late flowering in short-day conditions in this lines is highly viable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.) cv. Santa Clara was grown on a silt clay soil with 46 mg dm-3 Mehlich 1 extractable K, to evaluate the effects of trickle-applied K rates on fruit yield and to establish K critical concentrations in soil and in plant petioles. Six potassium rates (0, 48, 119, 189, 259 and 400 kg ha-1 K) were applied in a randomized complete block design with four replications. Soil and plant K critical levels were determined at two plant growth stages (at the beginning of the second and fourth cluster flowering). Total, marketable and weighted yields increased with K rates, reaching their maximum of 86.4, 73.4, and 54.9 ton ha-1 at 198, 194, and 125 kg ha-1 K , respectively. At the first soil sampling date K critical concentrations in the soil associated with K rates for maximum marketable and weighted yields were 92 and 68 mg dm-3, respectively. Potassium critical concentrations in the dry matter of the petioles sampled by the beginning of the second and fourth cluster flowering time, associated with maximum weighted yield, were 10.30 and 7.30 dag kg-1, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genotypic differences on growth and yield of common bean (Phaseolus vulgaris L.) in response to P supply were evaluated in a field experiment under biological N2 fixation. Eight cultivars were grown at two levels of applied P (12 and 50 kg ha-1 of P -- P1 and P2 respectively), in randomized block design in factorial arrangement. Vegetative biomass was sampled at three ontogenetic stages. The effects of genotype and phosphorus were significant for most traits, but not the genotype ´ phosphorus interaction. The cultivars presented different patterns of biomass production and nutrient accumulation, particularly on root system. At P1, P accumulation persisted after the beginning of pod filling, and P translocation from roots to shoots was lower. The nodule senescence observed after flowering might have reduced N2 fixation during pod filling. The responses of vegetative growth to the higher P supply did not reflect with the same magnitude on yield, which increased only 6% at P2; hence the harvest index was lower at P2. The cultivars with highest yields also presented lower grain P concentrations. A sub-optimal supply of N could have limited the expression of the yield potential of cultivars, reducing the genotypic variability of responses to P levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.