61 resultados para Fast Fourier Transform
Resumo:
Biodegradable polyurethanes (PUR) were prepared from polyols derived from castor oil by transesterification of pentaerythritol-modified castor oil and lysine polyisocyanates (LDI and LTI). The polyurethanes obtained were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). The mechanical behavior of the polyurethanes was measured by Shore A hardness and tensile testing (stress-strain curves). The biodegradable nature of the material was determined by contact angle, water absorption tests, and in vitro degradation in PBS solution. This study aims to examine the effect of the structure and functionality of diisocyanate on the mechanical properties and in vitro degradation of the material. The results were compared with homologous materials obtained from isophorone diisocyanate (IPDI) used in previous works. The objective was to evaluate candidate materials that can be potentially used in tissue engineering.
Resumo:
A hydrogel comprised of chitosan crosslinked using the low-toxicity crosslinker genipin was prepared, and the absorption of glibenclamide by the hydrogel was investigated. Optimized structures and their molecular electrostatic potentials were calculated using the AM1 method, and the results were used to evaluate the molecular interactions between the three compounds. The quantitative structure-property relationship model was also used to estimate the activity of the chemicals on the basis their molecular structures. In addition, theoretical Fourier transform infrared spectra were calculated to analyze the intermolecular interactions in the proposed system. Finally, the hydrophilicity of the hydrogel and its influence on the absorption process were also estimated.
Resumo:
Cocaine is usually seized mixed with a wide variety of adulterants such as benzocaine, lidocaine, caffeine, and procaine. The forensic identification of cocaine in these street drug mixtures is normally performed using colorimetric testing kits, but these tests may suffer from interferences, producing false-positive results. Here, we describe the use of analytical techniques including attenuated total reflection Fourier transform infrared (ATR-FTIR) and ultraviolet-visible (UV-VIS) spectroscopies to distinguish between cocaine and other adulterants (lidocaine, promethazine, powdered milk and yeast) that yield positive results on the Scott test using the thiocyanate cobalt reagent. A further 13 substances were also analyzed using the Scott test.
Resumo:
Numerous investigations are dedicated to the research and development of new polymer materials destined for innovation in pharmaceutical forms. The application of these technological resources has allowed the commercialization of new therapeutic systems for modified drug release. This investigation aimed to evaluate the association of modified chondroitin sulfate with an insoluble polymer, Eudragit® RS 30 D, widely available in the pharmaceutical market. Isolated films were prepared by the evaporation process using a Teflon® plate. The aqueous dispersions (4% m/v) of synthetic polymer received the addition of modified chondroitin sulfate at different ratios. The interactions of the polymer chains in the blends were physicochemically characterized by means of Fourier transform infrared spectroscopy, thermal analyses, differential scanning calorimetry, thermogravimetry and scanning electron microscopy combined with hydration and assays in alkaline pH. The results showed appropriate properties of the coating materials for solid oral forms intended for drug deliver in specific environments.
Resumo:
The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25°C up to 800°C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.
Resumo:
Materials based on tungstophosphoric acid (TPA) immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET) decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH4)3PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO) in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.
Resumo:
SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.
Resumo:
Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.
Resumo:
Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the reinforcement of cement-based composites. The residues were treated with wet-dry cycles and evaluated using tensile testing of fibers, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Compatibility with the cement-based matrix was evaluated through the fiber pull-out test and flexural test in composites reinforced with 2 % of sisal residues. The results indicate that the use of treated residue allows the production of composites with good mechanical properties that are superior to the traditional composites reinforced with natural sisal fibers.
Resumo:
Nineteen-channel EEGs were recorded from the scalp surface of 30 healthy subjects (16 males and 14 females, mean age: 34 years, SD: 11.7 years) at rest and under trains of intermittent photic stimulation (IPS) at rates of 5, 10 and 20 Hz. Digitalized data were submitted to spectral analysis with fast fourier transformation providing the basis for the computation of global field power (GFP). For quantification, GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data obtained under IPS. All subjects showed a photic driving effect at each rate of stimulation. GFP data were normally distributed, whereas ratios from photic driving effect data showed no uniform behavior due to high interindividual variability. Suppression of alpha-power after IPS with 10 Hz was observed in about 70% of the volunteers. In contrast, ratios of alpha-power were unequivocal in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP with 20-Hz IPS by alpha-GFP at rest (R = alpha-GFP IPS/alpha-GFPrest) thus resulted in ratios lower than 1. We conclude that ratios from GFP data with 20-Hz IPS may provide a suitable paradigm for further investigations.
Resumo:
The objective of the present study was to perform a spectral analysis of the electrical activity of the left colon of patients with hepatosplenic schistosomiasis. Thirty patients were studied, divided into 2 groups: group A was composed of 14 patients (9 males and 5 females) with hepatosplenic schistosomiasis and group B was composed of 16 female patients without schistosomiasis mansoni. Three pairs of electrodes were implanted in the left colon at the moment of the surgical treatment. The signals of the electric activity of the colon were captured after postoperative recovery from the ileus and fed into a computer by means of a DATAQ data collection system which identified and captured frequencies between 0.02 and 10 Hz. Data were recorded, stored and analyzed using the WINDAQ 200 software. For electrical analysis, the average voltage of the electrical wave in the three electrodes of all patients, expressed as millivolts (mV), was considered, together with the maximum and minimum values, the root mean square (RMS), the skewness, and the results of the fast Fourier transforms. The average RMS of the schistosomiasis mansoni patients was 284.007 mV. During a long period of contraction, the RMS increased in a statistically significant manner from 127.455 mV during a resting period to 748.959 mV in patients with schistosomiasis mansoni. We conclude that there were no statistically significant differences in RMS values between patients with schistosomiasis mansoni and patients without the disease during the rest period or during a long period of contraction.
Resumo:
The low incidence of cardiovascular diseases, including hypertension, in premenopausal women has led to the conclusion that ovarian hormones may have a protective effect on the cardiovascular system. We evaluated the effects of ovariectomy and/or estradiol on sympathovagal balance and heart rate variability (HRV) in female spontaneously hypertensive rats (SHR) with tachycardia and compared them to Wistar rats (12 weeks old; N = 8-12). Ovariectomy (OVX) and/or estradiol (10 µg/kg) did not affect basal arterial pressure in either rat strain, but estradiol increased basal heart rate (HR) in OVX SHR (454 ± 18 vs 377 ± 9 bpm). HR changes elicited by methylatropine and propranolol were used to evaluate the sympathovagal balance. Ovariectomy did not affect the cardiac sympathovagal balance of any group, while estradiol increased sympathetic tone in OVX SHR (120 ± 8 vs 56 ± 10 bpm) and sham-operated Wistar rats (57 ± 7 vs 28 ± 4 bpm), and decreased the parasympathetic tone only in OVX SHR (26 ± 7 vs 37 ± 5 bpm). HRV was studied in the frequency domain (Fast Fourier Transformation). Spectra of HR series were examined at low frequency (LF: 0.2-0.75 Hz) and high frequency (HF: 0.75-3 Hz) bands. The power of LF, as well as the LF/HF ratio, was not affected by ovariectomy, but estradiol increased both LF (29 ± 4 vs 18 ± 3 nu in Wistar sham-operated, 26 ± 5 vs 15 ± 3 nu in Wistar OVX, 50 ± 3 vs 38 ± 4 nu in SHR sham-operated, and 51 ± 3 vs 42 ± 3 nu in SHR OVX) and LF/HF (0.48 ± 0.08 vs 0.23 ± 0.03 nu in Wistar sham-operated, 0.41 ± 0.14 vs 0.19 ± 0.05 nu in Wistar OVX, 0.98 ± 0.11 vs 0.63 ± 0.11 nu in SHR sham-operated, and 1.10 ± 0.11 vs 0.78 ± 0.1 nu in SHR OVX). Thus, we suggest that ovariectomy did not affect the cardiac sympathovagal balance of SHR or Wistar rats, while estradiol increased the sympathetic modulation of HR.
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.