47 resultados para Extraction and Processing Industry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in crambe (Crambe abyssinica ) cultivation in Brazil is on the rise, whereas information on the nutrient requirements for this crop is scarce. The objective of this work was to evaluate the effect of nitrogen-phosphorus-potassium (N-P2O5-K2O formula 8:28:16) fertilization (0, 150, and 300 kg ha-1) on crambe shoot biomass production, grain and oil yields, and nutrient extraction and exportation in the second growing season after soybean. The experiment with a Haplorthox (Dystroferric Red Latosol) was carried out for two years in Botucatu, São Paulo State, Brazil. A randomized complete block design with eight replications was used. Fertilization with NPK at sowing increased the shoot biomass production, grain yield, grain oil content, as well as nutrient extraction and exportation at harvest. In the fertilized treatments, the average amounts of nutrients extracted per hectare were 91 kg K, 71 kg N, 52 kg Ca, 9.4 kg P, 9.4 kg Mg, 7.9 kg S, 2,348 g Fe, 289 g Zn, 135 g Mn, and 18.2 g Cu; while the average values of nutrient exportation per hectare were 54 kg N, 20 kg K, 12.3 kg Ca, 10 kg P, 6.6 kg S, 3.2 kg Mg, 365 g Zn, 60 g Fe, 50 g Mn, and 7.3 g Cu, with NPK fertilizer application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.