47 resultados para Evaporative water loss


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Roasting is one of the most complex coffee processing steps due to simultaneous transfers of heat and mass. During this process, beans lose mass because of fast physical and chemical changes that will set color and flavor of the commercial coffee beverage. Therefore, we aimed at assessing the kinetics of mass loss in commercially roasted coffee beans according to heating throughout the processing. For that, we used samples of 350-g Arabica coffee processed grains with water content of 0.1217 kga kg-1, in addition to a continuous roaster with firing gas. The roaster had initial temperatures of 285, 325, 345 and 380 °C, decreasing during the process up to 255, 285, 305 and 335 °C respectively. Mass loss was calculated by the difference between grain weight before and after roasting. We observed a linear variation directly dependent on roaster temperature. For each temperature during the process was obtained a constant mass loss rate, which was reported by the Arrhenius model with r2 above 0.98. In a roaster in non-isothermal conditions, the required activation energy to start the mass loss in a commercial coffee roasting index was 52.27 kJ mol -1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gastric emptying of liquids was investigated in male Wistar rats (8 to 10 weeks old, 210-300 g) dehydrated by water deprivation. In this model of dehydration, weight loss, hematocrit and plasma density were significantly higher in the dehydrated animals than in the control groups after 48 and 72 h of water deprivation (P<0.05). Three test meals (saline (N = 10), water (N = 10) and a WHO rehydrating solution containing in one liter 90 mEq sodium, 20 mEq potassium, 80 mEq chloride and 30 mEq citrate (N = 10)) were used to study gastric emptying following water deprivation for 24, 48 and 72 h. After 72 h, gastric emptying of the water (39.4% retention) and rehydrating solution (49.2% retention) test meals was significantly retarded compared to the corresponding control groups (P<0.05, Mann-Whitney test). The 72-h period of deprivation was used to study the recovery from dehydration, and water was supplied for 60 or 120 min after 67 h of deprivation. Body weight loss, hematocrit and plasma density tended to return to normal when water was offered for 120 min. In the animals supplied with water for 60 min, there was a recovery in the gastric emptying of water while the gastric emptying of the rehydrating solution was still retarded (53.1% retention; P<0.02, Kruskal-Wallis test). In the group supplied with water for 120 min, the gastric emptying of the rehydrating (51.7% retention) and gluco-saline (46.0% retention) solutions tended to be retarded (P = 0.04, Kruskal-Wallis test). In this model of dehydration caused by water deprivation, with little alteration in the body electrolyte content, gastric emptying of the rehydrating solution was retarded after rehydration with water. We conclude that the mechanisms whereby receptors in the duodenal mucosa can modify gastric motility are altered during dehydration caused by water deprivation