288 resultados para Espectrometria gama
Resumo:
Six supercritical fluid extraction (SFE) methods were tested, by varying the following operational parameters: CO2 pressure, time and temperature of extraction, type and proportion of static modifier, and Hydromatrix®/sample rate into cell. Firstly, insecticide carbamates were extracted from spiked potatoes samples (fortification level of 0,5 mg.Kg-1) by using SPE procedures, and then final extracts were analyzed HPLC/fluorescence. Good performance was observed with SFE methods that operated with values of temperature and CO2 pressure of 50 ºC and 350 bar, respectively. Best efficiency was obtained when it was used acetonitrile as a modifier (3% on the cell volume), and Hydromatrix®/sample rate of 2:1. Static time was of 1 min; total extraction time was of 35 min; dynamic extraction was performed with 15 mL of CO2, and it was used methanol (2 mL) for the dissolution of the final residue. In such conditions, pesticide recoveries varied from 72 to 94%, depending on the analyzed compound. In higher extraction temperatures, a rapid degradation was observed for some compounds, such as aldicarb and carbaryl; presence of their metabolites was further confirmed by HPLC-APCI/MS in positive mode. Detection limits for chromatographic analysis varied from 0,2 to 1,3 ng.
Resumo:
In this review it is presented some aspects of electrothermal atomic absorption spectrometry with tungsten coil (ETAW-AAS) since its beginning until the present days as well as the perspectives for this technique. Some aspects concerning its development and theoretical concepts are discussed. The analytical figures of merit such as limit of detection (LD), characteristic mass (m0), relative standard deviation (RSD), accuracy and precision are evaluated, compared and discussed considering published works. It is also evaluated its advantages, applications, limitations and instrumental development. The use of diode laser as radiation source and its perspectives to ETAW are also discussed.
Resumo:
The use of pesticides in agriculture presents some problems to ecosytems as a consequence of their remaining in the environment. Conventional methods for environmental decontamination sometimes just transfer these residues from one place to another. The use of gamma radiation from cobalt-60 to induce 2,4-D degradation in aqueous solution containing humic acid was studied. Results show that the herbicide is completely degraded after treatment with a 30 kGy dose. There were decreases in the degradation of the 2,4-D when humic acid was added at all doses. Some radiolytic products are proposed. The 2,4-D radiolytic yields (G) from 2,4-D were calculated.
Resumo:
A method for determination of lead and cadmium in aqueous samples using solvent microextraction and dithizone as complexing agent with FAAS was developed. Solvent microextraction parameters were optimized. The effect of foreign ions on the extraction yields was studied. The extraction was carried out until the aqueous to organic phase ratio achieved a 250 fold preconcentration of metals. For preconcentration times of 4 min the 3sigma detection limits, relative standard deviations (n=7) and linear calibration ranges were 1.6 mug L-1, 5.8% and 10.0 -- 80.0 mug L-1 for lead and 11.1 ng L-1, 5.9% and 0.3 -- 3.0 mug L-1 for cadmium, respectively. The solvent microextraction procedure presented here was applied to the determination of lead and cadmium in natural waters.
Resumo:
The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS), microwave induced plasma optical emission spectrometry (MIP-OES), inductively coupled plasma optical emission spectrometry (ICP-OES) , inductively coupled plasma mass spectrometry (ICP-MS) and furnace atomic nonthermal excitation spectrometry (FANES) are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry) is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.
Resumo:
The goal of this study was to evaluate the feasibility of direct introduction of clay slurries in an inductively coupled plasma optical emission spectrometer with axial view configuration. Calibration was performed using a certified reference material with a mean particle size of 13 µm (IPT-42) and the analytical curve was applied for quantification of two others reference materials (IPT-28 and IPT-32) and four samples. It was demonstrated that the analytical curve thus obtained was not completely suitable for IPT-28 and samples due to different mineralogical phases determined by X-ray diffraction. After considering this effect, it was possible for most elements to obtain results in agreement with certified values or with values obtained by a conventional technique at a 95% confidence level. It was demonstrated that the ICP-OES with axial view configuration did not present any incompatibility with the direct introduction of a complex inorganic suspension.
Resumo:
The most important features of the CE-ICP hyphenation, as well as its advantages and drawbacks as a tool for speciation are discussed. The fundamental principles of capillary electrophoresis and inductively coupled plasma mass spectrometry are also presented. Some applications involving different designs proposed in the literature to couple CE and ICP system for elemental speciation are reviewed.
Resumo:
This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry and the future of this compensation strategy are critically discussed.
Resumo:
Although electrospray ionization mass spectrometry (ES-MS) has been extensively applied to study organic and biochemical species, it is also specially suitable to study inorganic and organo-metallic species. Such species, even those that are low-volatile or thermo-unstable, can be easily ionized or simply transferred from liquid to gas phase by electrospray. However, chemical transformations frequently occur during the process. This paper discusses the fundamental aspects of electrospray ionization as well as its analytical applicability to inorganic and organo-metallic species in order to spread the technique and make its characteristics more familiar to potential users.
Resumo:
The carbon dioxide reforming of methane was carried out over nickel catalysts supported on the gamma-Al2O3/CeO2 system prepared by wet impregnation. With the increase of the CeO2 weight in the catalyst, a higher stability was observed in the catalytic activity, together with an excellent resistance to carbon deposition and a better Ni dispersion. The catalysts were characterized by means of surface area measurements, TPR, H2 chemisorption, XRD, SEM, EDX, XPS and TEM. An interaction between Ni and CeO2 was observed to the Ni/CeO2 sample after activation in a H2 atmosphere above 300 ºC. Such behavior has a significantly influence on the catalytic activity.
Resumo:
The toxicity of the major As species present in the environment justifies the effort for quantifying the element in environmental organic samples, which can vary from animal and vegetal tissues to coal and industrial residues. This paper comments about the applicability of the O2 bomb digestion, as a general procedure for all environmental organic materials. A rapid and straightforward method is suggested, which consists in burning the sample in the bomb at high O2 pressure, dissolving the vapours in diluted HNO3 and determining As in the resulting solution by atomic absorption spectrometry with electrothermal atomization. The method was applied to certified materials and plant samples.
Resumo:
A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat) as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.
Resumo:
The violence derived from crimes involving firearms represents one of the main concerns of society. For this reason modern techniques have emerged in forensic science to identify suspects at crime scenes. This work describes a methodology to identify residues present in the hands of suspect by using a high resolution inductively coupled plasma mass spectrometry and collection procedure based on ethylenediaminetetraacetic acid (EDTA) solution as a complexing agent in moistened swabs. In order to distinguish real gunshot residues from others types of residues present in the hand of suspect, ternary ratio per cent diagrams were developed for antimony (Sb), barium (Ba) and lead (Pb) detected on the hands of volunteers, before and immediately after shooting tests, revealing a remarkable difference in both situations.
Resumo:
The purpose of this paper is the development of simple strategies to teach basic concepts of atomic spectrometry. Metals present in samples found in the daily lives of students are determined by flame atomic emission spectrometry (FAES). FAES is an accurate, precise, and inexpensive analytical method often used for determining sodium, potassium, lithium, and calcium. Historical aspects and their contextualization for students are also presented and experiments with samples that do not require pre-treatment are described.
Resumo:
In this work a closed-vessel microwave-assisted acid decomposition procedure for clays was developed. Aluminum, Ca, Fe, K, Mg, Na, Si, and Ti were determined in clay digestates by inductively coupled plasma optical emission spectrometry. The most critical parameter for total decomposition of clays was the composition of the reagent mixture. The applied power and the heating time exerted a less critical influence. Best decomposition conditions were attained using a reagent mixture containing 4 mL aqua regia plus 3 mL HF and the heating program was implemented in 12 min. The accuracy of the results was demonstrated using two standard reference materials and a paired t-test showed a good agreement between determined and certified values at a 95% confidence level.