49 resultados para Embolism, Paradoxical


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidemiology of tropical spastic paraparesis/human T lymphotropic virus I (HTLV-I)-associated myelopathy (TSP/HAM) is frequently inconsistent and suggests environmental factors in the etiology of these syndromes. The neuropathology corresponds to a toxometabolic or autoimmune process and possibly not to a viral disease. Some logical hypotheses about the etiology and physiopathology of TSP and HAM are proposed. Glutamate-mediated excitotoxicity, central distal axonopathies, cassava, lathyrism and cycad toxicity may explain most cases of TSP. The damage caused to astrocytes and to the blood-brain barrier by HTLV-I plus xenobiotics may explain most cases of HAM. Analysis of the HTLV-I/xenobiotic ratio clarifies most of the paradoxical epidemiology of TSP and HAM. Modern neurotoxicology, neuroimmunology and molecular biology may explain the neuropathology of TSP and HAM. It is quite possible that there are other xenobiotics implicated in the etiology of some TSP/HAMs. The prevention of these syndromes appears to be possible today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since both paradoxical sleep deprivation (PSD) and stress alter male reproductive function, the purpose of the present study was to examine the influence of PSD and other stressors (restraint, electrical footshock, cold and forced swimming, N = 10 per group) on steroid hormones in adult Wistar male rats. Rats were submitted to chronic stress for four days. The stressors (footshock, cold and forced swimming) were applied twice a day, for periods of 1 h at 9:00 and 16:00 h. Restrained animals were maintained in plastic cylinders for 22 h/day whereas PSD was continuous. Hormone determination was measured by chemiluminescent enzyme immunoassay (testosterone), competitive immunoassay (progesterone) and by radioimmunoassay (corticosterone, estradiol, estrone). The findings indicate that PSD (13.7 ng/dl), footshock (31.7 ng/dl) and cold (35.2 ng/dl) led to lower testosterone levels compared to the swimming (370.4 ng/dl) and control (371.4 ng/dl) groups. However, progesterone levels were elevated in the footshock (4.5 ng/ml) and PSD (5.4 ng/ml) groups compared to control (1.6 ng/ml), swimming (1.1 ng/ml), cold (2.3 ng/ml), and restrained (1.2 ng/ml) animals. Estrone and estradiol levels were reduced in the PSD, footshock and restraint groups compared to the control, swimming and cold groups. A significant increase in corticosterone levels was found only in the PSD (299.8 ng/ml) and footshock (169.6 ng/ml) groups. These changes may be thought to be the full steroidal response to stress of significant intensity. Thus, the data suggest that different stress modalities result in distinct steroid hormone responses, with PSD and footshock being the most similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venous thrombosis, including deep vein thrombosis and pulmonary embolism, is a common disease that frequently recurs. Recurrence can be prevented by anticoagulants, but this comes at the risk of bleeding. Therefore, assessment of the risk of recurrence is important to balance the risks and benefits of anticoagulant treatment. This review briefly outlines what is currently known about the epidemiology of recurrent venous thrombosis, and focuses in more detail on potential new risk factors for venous recurrence. The general implications of these findings in patient management are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.