85 resultados para Electrochemical treatment. Effluent separator box of water and oil. Oil products
Resumo:
Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.
Resumo:
Kudzu is a cover crop that has escaped cultivation in some subtropical and warm temperate regions. Kudzu has previously demonstrated broad intraspecific physiological plasticity while colonizing new environments. The objective of this paper was to investigate characteristics of kudzu leaflet anatomy that might contribute to its successful growth in climatically distinct environments, and to escape cultivation as well. Fresh and fixed leaflet strips of field-grown plants were analyzed. The lower epidermis of kudzu showed a higher frequency of stomata (147 ± 19 stomata mm-2) than the upper epidermis (26 ± 17 stomata mm-2). The average number of trichomes per square milimeter was 8 for both the upper and the lower epidermis. The average trichome length was 410 ± 200 mum for the upper epidermis and 460 ± 190 mum for the lower epidermis. Cuticle thickness was not considerably different between lower and upper epidermis. The leaflet blade consisted basically of two layers (upper and lower) of unicellular epidermis, two layers of palisade parenchyma and one layer of spongy parenchyma. One layer of paraveinal mesophyll was found between palisade and spongy parenchyma. In conclusion, leaflets of kudzu present anatomical characteristics that might contribute to the broad physiological plasticity shown by kudzu.
Resumo:
The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.
Resumo:
The objective of this work was to study the response to water stress of a drought sensitive soybean cultivar inoculated with Bradyrhizobium japonicum (strain CB1809, Semia 586) and B. elkanii (strain 29W, Semia 5019). CB1809 nodulated plants produced a significantly higher root fraction (19%) than 29W (14.6%). Plants inoculated with CB1809 produced less nodules and accumulated more nitrogen than those inoculated with 29W. In general, low amounts of ureides in nodules were found in watered plants inoculated with either CB1809 or 29W strains, but those levels were five-fold increased in stressed plants inoculated with CB1809. Nodules formed by strain CB1809 had aspartate and glutamate as major amino acids, while those formed by 29W had glutamate, asparagine and alanine. In nodules of plants inoculated with CB1809 aspartate showed the highest accumulation (5 µmol g-1); in stressed plants this amino acid reached a value of 26 µmol g-1, and asparagine was not detected. Nodules formed by the strain 29W accumulated 1 µmol g-1 of aspartate, whether plants were stressed or not. Asparagine was the major amino acid found in nodules from watered plants (6 µmol g-1) and the amount of this amino acid was six-fold increased when plants were water stressed.
Resumo:
The objective of this work was to evaluate the effect of drought and nitrogen (N) stresses on stomatal conductance of three maize cultivars grown in the field. The stomatal conductance of Sol da Manhã variety (BRS 4157) and Pioneer 6875 hybrid, under drought and high N, was lower than under drought and low N, which indicates drought tolerance, since these cultivars did not exhibit reduction in grain yield by drought, as observed for Amarelão variety, which flowered under more severe drought. 'Sol da Manhã' exhibited shorter anthesis-silking interval under high N than under low N, an additional indication of tolerance.
Resumo:
The objectives of this study were to evaluate the residues of the insecticide carbosulfan and its carbofuran metabolites and 3-hydroxy-carbofuran in orange compartments (whole fruit, bagasse and juice) and comparison between the residual levels found in fruits with the maximum residue level and the safety interval established by the Brazilian legislation. Two field experiments were carried out, both with the following treatments: a-check; b-one application of 10 g of carbosulfan . 100 L-1 of water; c-one application with twice the rate applied in treatment b; d-four applications with the same rate applied in treatment b. Samples were taken at (-1), zero, 1, 3, 7, 14, 21 and 28 days after the last or unique application. The quantitative determinations were done by gas chromatography technique, using a nitrogen-phosphorus detector. The carbosulfan metabolism to its carbofuran metabolite was rapid (3 days), being both analytes concentrated in the bagasse (peel + flavedo + albedo). However, the metabolism of carbofuran to 3-hydroxy-carbofuran was of low intensity or this metabolite was quickly dissipated. Carbosulfan residues and its metabolites did not penetrate into the fruit, thus not contaminating the juice. The use of the pesticide was adequate, with respect to fruit consumption, in relation to the Brazilian legislation.
Resumo:
Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa)2], [Cu(qibsa)2] and [Zn(qibsa)2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa)2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.
Resumo:
Electrochemical behavior of pesticides is extensively studied, but little attention has been given to the study of their degradation products (by-products) by electrochemical methods. However, the degradation products of pesticides can be even more toxic then the parent products and such studies should be encouraged. Therefore, the objective of this work was to evaluate the electroactivity of by-products of imazaquin, methylparathion, bentazon and atrazine, generated by UV irradiation and measured using cyclic and differential pulse voltammetry and UV-visible absorption spectrophotometry. Results have shown that several by-products exhibit electroactivity, allowing, in some cases, the simultaneous determination of both parent and degradation products.
Resumo:
A new method is described for the determination of the herbicide bispyribac-sodium in surface water, especially from river and irrigated rice water samples. The method involves extraction in solid phase and quantification by high performance liquid chromatography with diode array detection (HPLC-DAD). After optimization of the extraction and separation parameters, the method was validated. The method presented average recoveries of 101.3 and 97.7%, under repeatability and intermediate precision conditions, respectively, with adequate precision (RSD from 0.9 to 7.5%). The method was applied for the determination of bispyribac-sodium in surface water samples with a limit of detection of 0.1 μg L-1.
Resumo:
A simple ion pair-dispersive liquid-liquid microextraction method was proposed for preconcentration trace amounts of rhodium. An ion association complex of RhCl4- and tetradecyldimetylbenzylamonium was extracted into cholorobenzene. The volume and the type of extractive and dispersive solvents, the extraction time and the pH of the aqueous solutions were optimized. The calibration curve was linear in the range of 0.6-500 ng mL-1 of rhodium. The limit of detection was 0.10 ng mL-1 in initial solution and preconcentration factor was 40. The proposed method was successfully applied to the extraction and determination of rhodium in road dust and water samples.
Resumo:
In the proposed method, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, such as extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, linearity was maintained between 1.0 ng mL-1 to 1.5 mg mL-1 for zinc and 1.0 ng mL-1 to 0.4 mg mL-1 for cadmium. The proposed method has been applied for determination of trace amount of zinc and cadmium in standard and water samples with satisfactory results.
Resumo:
A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl) dimethane (TTDM) in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.
Resumo:
Based on published thermodynamic quantities for solution, partitioning and sublimation of acetanilide (ACN), acetaminophen (ACP) and Phenacetin (PNC), the thermodynamic quantities for drugs solvation in octanol-saturated water (W(ROH)) and water-saturated octanol (ROH(W)) as well as the drugs dilution in ROH(W) were calculated. The Gibbs energies of solvation were favourable in all cases. The respective enthalpies and entropies were negative indicating an enthalpy-driving for the solvation process in all cases. On the other hand, the Gibbs energies of dilution were favourable for ACP and PNC but unfavourable for ACN, whereas the respective enthalpies and entropies were negative for ACP and PNC but positive for ACN indicating enthalpy-driving for the dilution process in the case of the former drugs and entropy-driving for the latter. From the obtained values for the transfer processes, an interpretation based on solute-solvent interactions was developed.
Resumo:
Water and fertilizer among the production factors are the elements that most restrict the production of cashew. The precise amount of these factors is essential to the success of the crop yield. This research aimed to determine the best factor-product ratio and analyze technical and economic indicators, of productivity of the cashew clone BRS 189 (Anacardium occidentale) to production factors water and potassium. The experiment was conducted from May 2009 to December 2009 in an experimental area of 56.0 m x 112.0 m in the irrigated Curu - Pentecoste, located in the municipality of Pentecoste, Ceará, Brazil. Production factors water (W) and potassium (K) were the independent variables and productivity (Y), the dependent variable. Ten statistical models that have proven satisfactory for obtaining production function were tested. The marginal rate of substitution was obtained through the ratio of the potassium marginal physical product and the water marginal physical product. The most suited model to the conditions of the experiment was the quadratic polynomial without intercept and interaction. Considering that the price of the water was 0.10 R$ mm -1, the price of the potassium 2.19 R$ kg -1 and the price of the cashew 0.60 R$ kg-1, the amounts of water and K2O to obtain the maximum net income were 6,349.1 L plant-1 of water and 128.7 g plant -1year, -1 respectively. Substituting the values obtained in the production function, the maximum net income was achieved with a yield of 7,496.8 kg ha-1 of cashew.
Resumo:
The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.