117 resultados para ENDOTHELIAL MODULATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted disruption of the neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) genes has led to knockout mice that lack these isoforms. These animal models have been useful to study the roles of nitric oxide (NO) in physiologic processes. nNOS knockout mice have enlarged stomachs and defects in the inhibitory junction potential involved in gastrointestinal motility. eNOS knockout mice are hypertensive and lack endothelium-derived relaxing factor activity. When these animals are subjected to models of focal ischemia, the nNOS mutant mice develop smaller infarcts, consistent with a role for nNOS in neurotoxicity following cerebral ischemia. In contrast, eNOS mutant mice develop larger infarcts, and show a more pronounced hemodynamic effect of vascular occlusion. The knockout mice also show that nNOS and eNOS isoforms differentially modulate the release of neurotransmitters in various regions of the brain. eNOS knockout mice respond to vessel injury with greater neointimal proliferation, confirming that reduced NO levels seen in endothelial dysfunction change the vessel response to injury. Furthermore, eNOS mutant mice still show a protective effect of female gender, indicating that the mechanism of this protection cannot be limited to upregulation of eNOS expression. The eNOS mutant mice also prove that eNOS modulates the cardiac contractile response to ß-adrenergic agonists and baseline diastolic relaxation. Atrial natriuretic peptide, upregulated in the hearts of eNOS mutant mice, normalizes cGMP levels and restores normal diastolic relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review explores advances in our understanding of the intracellular regulation of the endothelial isoform of nitric oxide synthase (eNOS) in the context of its dynamically regulated subcellular targeting. Nitric oxide (NO) is a labile molecule, and may play important biological roles both within the cell in which it is synthesized and in its interactions with nearby cells and molecules. The localization of eNOS within the cell importantly influences the biological role and chemical fate of the NO produced by the enzyme. eNOS, a Ca2+/calmodulin-dependent enzyme, is subject to a complex pattern of intracellular regulation, including co- and post-translational modifications and interactions with other proteins and ligands. In endothelial cells and cardiac myocytes eNOS is localized in specialized plasmalemmal signal-transducing domains termed caveolae; acylation of the enzyme by the fatty acids myristate and palmitate is required for targeting of the protein to caveolae. Targeting to caveolae facilitates eNOS activation following receptor stimulation. In resting cells, eNOS is tonically inhibited by its interactions with caveolin, the scaffolding protein in caveolae. However, following agonist activation, eNOS dissociates from caveolin, and nearly all the eNOS translocates to structures within the cell cytosol; following more protracted incubations with agonists, most of the cytosolic enzyme subsequently translocates back to the cell membrane. The agonist-induced internalization of eNOS is completely abrogated by chelation of intracellular Ca2+. These rapid receptor-mediated effects are seen not only for "classic" eNOS agonists such as bradykinin, but also for estradiol, indicating a novel non-genomic role for estrogen in eNOS activation. eNOS targeting to the membrane is labile, and is subject to receptor-regulated Ca2+-dependent reversible translocation, providing another point for regulation of NO-dependent signaling in the vascular endothelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC) can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cardiac ischemia is usually characterized as a disease of the myocyte, it is clear that the vasculature, and especially endothelial cells, is also a major target of this pathology. Indeed, using a rat model of ischemia/reperfusion, we were able to detect severe endothelial dysfunction (assessed as a decreased response to acetylcholine) after acute or chronic reperfusion. Given the essential role of the endothelium in the regulation of vascular tone, as well as platelet and leukocyte function, such a severe dysfunction could lead to an increased risk of vasospasm, thrombosis and accelerated atherosclerosis. This dysfunction can be prevented by free radical scavengers and by exogenous nitric oxide. Endothelial dysfunction can also be prevented by preconditioning with brief periods of intermittent ischemia, thus extending to coronary endothelial cells the concept of endogenous protection previously described at the myocyte level. Experiments performed on cultured cells showed that the endothelial protection induced by free radical scavengers or by preconditioning was due to a lesser expression of endothelial adhesion molecules such as intercellular adhesion molecule-1, leading to a lesser adhesion of neutrophils to endothelial cells. Identification of the mechanisms of this protection may lead to the development of new strategies aimed at protecting the vasculature in ischemic heart diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine receptors are involved in the expression of grooming behavior. The pregnancy-induced increase in self-licking observed in rats is important for mammary gland development and lactation. This study focuses on the role of dopamine receptor subtypes in grooming behavior of virgin and pregnant female rats. General and mammary gland grooming were measured in virgin rats treated with 0.25 mg/kg of the D1-like agonist SKF-81297 and antagonist SKF-83566 and the D2-like agonist lisuride and antagonist sulpiride. The effects of 0.01 and 0.25 mg/kg doses of the same agonists and antagonists were evaluated in pregnant rats as well. In virgin animals both SKF-83566 and sulpiride treatments significantly reduced the time spent in general grooming, while none of the dopamine agonists was able to significantly change any parameter of general grooming. Time spent in grooming directed at the mammary glands was not affected significantly by any of the drug treatments in virgin rats. All drugs tested significantly decreased the frequency of and the time spent with general grooming, while SKF-81297 treatment alone did not significantly reduce the duration of mammary gland grooming in pregnant rats. These data show that in female rats the behavioral effects of D1-like and D2-like dopamine receptor stimulation and blockade differ according to physiological state. The results suggest that dopamine receptors may play specific roles modulating grooming behavior in pregnant rats. Since grooming of the mammary gland during pregnancy may influence lactation, this aspect is relevant for studies regarding the perinatal use of dopamine-related drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccharomyces cerevisiae neutral trehalase (encoded by NTH1) is regulated by cAMP-dependent protein kinase (PKA) and by an endogenous modulator protein. A yeast strain with knockouts of CMK1 and CMK2 genes (cmk1cmk2) and its isogenic control (CMK1CMK2) were used to investigate the role of CaM kinase II in the in vitro activation of neutral trehalase during growth on glucose. In the exponential growth phase, cmk1cmk2 cells exhibited basal trehalase activity and an activation ratio by PKA very similar to that found in CMK1CMK2 cells. At diauxie, even though both cells presented comparable basal trehalase activities, cmk1cmk2 cells showed reduced activation by PKA and lower total trehalase activity when compared to CMK1CMK2 cells. To determine if CaM kinase II regulates NTH1 expression or is involved in post-translational modulation of neutral trehalase activity, NTH1 promoter activity was evaluated using an NTH1-lacZ reporter gene. Similar ß-galactosidase activities were found for CMK1CMK2 and cmk1cmk2 cells, ruling out the role of CaM kinase II in NTH1 expression. Thus, CaM kinase II should act in concert with PKA on the activation of the cryptic form of neutral trehalase. A model for trehalase regulation by CaM kinase II is proposed whereby the target protein for Ca2+/CaM-dependent kinase II phosphorylation is not the neutral trehalase itself. The possible identity of this target protein with the recently identified trehalase-associated protein YLR270Wp is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If a dot is flashed in perfect alignment with a pair of dots rotating around the visual fixation point, most observers perceive the rotating dots as being ahead of the flashing dot (flash-lag effect). This perceptual effect has been interpreted to result from the perceptual extrapolation of the moving dots, the differential visual latencies between flashing and moving stimuli, as well as the modulation of attentional mechanisms. Here we attempted to uncouple the attentional effects brought about by the spatial predictability of the flashing dot from the sensory effects dependent on its visual eccentricity. The stimulus was a pair of dots rotating clockwise around the fixation point. Another dot was flashed at either the upper right or the lower left of the visual field according to three separate blocked situations: fixed, alternate and random positions. Twenty-four participants had to judge, in all three situations, the location of the rotating dots in relation to the imaginary line connecting the flashing dot and the fixation point at the moment the dot was flashed. The flash-lag effect was observed in all three situations, and a clear influence of the spatial predictability of the flashing dot on the magnitude of the perceptual phenomenon was revealed, independently of sensory effects related to the eccentricity of the stimulus in the visual field. These findings are consistent with our proposal that, in addition to sensory factors, the attentional set modulates the magnitude of the differential latencies that give rise to the flash-lag phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When two stimuli are presented simultaneously to an observer, the perceived temporal order does not always correspond to the actual one. In three experiments we examined how the location and spatial predictability of visual stimuli modulate the perception of temporal order. Thirty-two participants had to report the temporal order of appearance of two visual stimuli. In Experiment 1, both stimuli were presented at the same eccentricity and no perceptual asynchrony between them was found. In Experiment 2, one stimulus was presented close to the fixation point and the other, peripheral, stimulus was presented in separate blocks in two eccentricities (4.8º and 9.6º). We found that the peripheral stimulus was perceived to be delayed in relation to the central one, with no significant difference between the delays obtained in the two eccentricities. In Experiment 3, using three eccentricities (2.5º, 7.3º and 12.1º) for the presentation of the peripheral stimulus, we compared a condition in which its location was highly predictable with two other conditions in which its location was progressively less predictable. Here, the perception of the peripheral stimulus was also delayed in relation to the central one, with this delay depending on both the eccentricity and predictability of the stimulus. We argue that attentional deployment, manipulated by the spatial predictability of the stimulus, seems to play an important role in the temporal order perception of visual stimuli. Yet, under whichever condition of spatial predictability, basic sensory and attentional processes are unavoidably entangled and both factors must concur to the perception of temporal order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on chronotropic and pressor responses was studied in anesthetized intact rats and rats submitted to partial and complete autonomic blockade. Blood pressure and heart rate were monitored intra-arterially. Intravenous L-NAME injection (7.5 mg/kg) elicited the same hypertensive response in intact rats and in rats with partial (ganglionic and parasympathetic blockade) and complete autonomic blockade (38 ± 3, 55 ± 6, 54 ± 5, 45 ± 5 mmHg, respectively; N = 9, P = NS). L-NAME-induced bradycardia at the time when blood pressure reached the peak plateau was similar in intact rats and in rats with partial autonomic blockade (43 ± 8, 38 ± 5, 46 ± 6 bpm, respectively; N = 9, P = NS). Rats with combined autonomic blockade showed a tachycardic response to L-NAME (10 ± 3 bpm, P<0.05 vs intact animals, N = 9). Increasing doses of L-NAME (5.0, 7.5 and 10 mg/kg, N = 9) caused a similar increase in blood pressure (45 ± 5, 38 ± 3, 44 ± 9 mmHg, respectively; P = NS) and heart rate (31 ± 4, 34 ± 3, 35 ± 4 bpm, respectively; P = NS). Addition of L-NAME (500 µM) to isolated atria from rats killed by cervical dislocation and rats previously subjected to complete autonomic blockade did not affect spontaneous beating or contractile strength (N = 9). In vivo results showed that L-NAME promoted a tachycardic response in rats with complete autonomic blockade, whereas the in vitro experiments showed no effect on intrinsic heart rate, suggesting that humoral mechanisms may be involved in the L-NAME-induced cardiac response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple reaction time (SRT) in response to visual stimuli can be influenced by many stimulus features. The speed and accuracy with which observers respond to a visual stimulus may be improved by prior knowledge about the stimulus location, which can be obtained by manipulating the spatial probability of the stimulus. However, when higher spatial probability is achieved by holding constant the stimulus location throughout successive trials, the resulting improvement in performance can also be due to local sensory facilitation caused by the recurrent spatial location of a visual target (position priming). The main objective of the present investigation was to quantitatively evaluate the modulation of SRT by the spatial probability structure of a visual stimulus. In two experiments the volunteers had to respond as quickly as possible to the visual target presented on a computer screen by pressing an optic key with the index finger of the dominant hand. Experiment 1 (N = 14) investigated how SRT changed as a function of both the different levels of spatial probability and the subject's explicit knowledge about the precise probability structure of visual stimulation. We found a gradual decrease in SRT with increasing spatial probability of a visual target regardless of the observer's previous knowledge concerning the spatial probability of the stimulus. Error rates, below 2%, were independent of the spatial probability structure of the visual stimulus, suggesting the absence of a speed-accuracy trade-off. Experiment 2 (N = 12) examined whether changes in SRT in response to a spatially recurrent visual target might be accounted for simply by sensory and temporally local facilitation. The findings indicated that the decrease in SRT brought about by a spatially recurrent target was associated with its spatial predictability, and could not be accounted for solely in terms of sensory priming.