102 resultados para Dry-wood-termite
Resumo:
Zeolites are hydrated crystalline aluminosilicate minerals of natural occurrence, structured in rigid third dimension net that can be used as slow release plant-nutrient source. The main objective of this study was to evaluate the effects of plant growth substrate under zeolite application, enriched with N, P and K, on dry matter yield and on nutrient contents in consecutive crops of lettuce, tomato, rice, and andropogon grass. The experiment was carried out in a greenhouse, with 3 kg pots with an inert substrate, evaluated in a randomized block design with three replications. Treatments consisted of four types of enrichment of concentrated natural zeolite: concentrated zeolite (Z) only, zeolite + KNO3 (ZNK), zeolite + K2HPO4 (ZPK) and zeolite + H3PO4 + apatite (ZP), and a control grown in substrate fertilized with a zeolite-free nutrient solution. Four levels of enriched zeolite were tested: 20, 40, 80, and 160 g/pot. Four successive crops were grown on the same substrate in each pot: lettuce, tomato, rice, and andropogon grass. Results indicated that N, P and K enriched zeolite was an adequate slow-release nutrient source for plants. The total dry matter production of above-ground biomass of four successive crops followed a descending order: ZP > ZPK > ZNK > Z.
Resumo:
High rates of phosphate fertilizers are applied to potato (Solanum tuberosum L.), which may cause antagonistic interactions with other nutrients and limit crop yields when over-supplied. The purpose of this study was to evaluate the influence of phosphorus (P) levels in nutrient solution on P use efficiency, nutritional status and dry matter (DM) accumulation and partitioning of potato plants cv. Ágata. The experiment was carried out in a greenhouse, arranged in a completely randomized block design with four replications. Treatments consisted of seven P levels in nutrient solution (0, 2, 4, 8, 16, 31, and 48 mg L-1). Plants were harvested after 28 days of growth in nutrient solution, and separated in roots, stems and leaves for evaluations. The treatment effects were analyzed by regression analysis. Phosphorus levels of up to 8 mg L-1 increased the root and shoot DM accumulation, but drastically decreased the root/shoot ratio of potato cv. Ágata. Higher P availability increased P concentration, accumulation and absorption efficiency, but decreased P use efficiency. Higher P levels increased the N, P, Mg, Fe, and Mn concentrations in roots considerably and decreased K, S, Cu, and Zn concentrations. In shoot biomass, N, P, K, and Ca concentrations were significantly increased by P applied in solution, unlike Mg and Cu concentrations. Although higher P levels (> 8 mg L-1) in nutrient solution increased P concentration, accumulation and absorption efficiency, the DM accumulation and partitioning of potato cv. Ágata were not affected.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Dry matter and macronutrient accumulation in fruits of Conilon coffee with different ripening cycles
Resumo:
The period between anthesis and fruit ripening varies according to the Conilon coffee (Coffea canephora) genotype. Therefore, the time of the nutritional requirements for fruit formation may differ, depending on the formation phase and the genotype, and may directly affect split application of fertilizer. The aim of this study was to quantify the accumulation of dry matter and N, P, K, Ca, Mg and S at several stages in the fruit of the Conilon coffee genotype with different ripening cycles, which may suggest the need for split application of fertilizer in coffee. The experiment was carried out in the municipality of Nova Venecia, Espírito Santo, Brazil, throughout the reproductive cycle. The treatments were composed of four coffee genotypes with different ripening cycles. A completely randomised experimental design was used. with five replicates. Plagiotropic branches were harvested from flowering to fruit ripening at 28-day intervals to determine the dry matter of the fruits and the concentration and accumulation of the nutrients they contained. The behavior of dry matter and macronutrient accumulation during the study period was similar and increasing, but it differed among genotypes sampled in the same season. Early genotypes exhibited a higher speed of dry matter and nutrient accumulation. Split application of fertilizer should differ among coffee genotypes with different ripening cycles (early, intermediate, late and very late).
Resumo:
Pig slurry (PS) represents an important nutrient source for plants and using it as fertilizer makes greater nutrient cycling in the environment possible. The aim of this study was to assess how PS application over a period of years can affect grain yield, dry matter production and nutrient accumulation in commercial grain and cover crops. The experiment was carried out in an experimental area of the Universidade Federal de Santa Maria, in Santa Maria, RS, Brazil, from May 2000 to January 2008. In this period, 19 grain and cover crops were grown with PS application before sowing, at rates of 0, 20, 40 and 80 m³ ha-1. The highest PS rate led to an increase in nutrient availability over the years, notably of P, but also of nutrients that are potentially toxic to plants, especially Cu and Zn. The apparent recovery of nutrients by commercial grain and cover crops decreased with the increasing number of PS applications to the soil. Accumulated dry matter production of the crops and maize grain yield were highest at an annual application rate of 80 m³ ha-1 PS. However, common bean yield increased up to 20 m³ ha-1 PS, showing that the crop to be grown should be considered to define the application rate.
Resumo:
Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2), epigeous mounds (nests) were georeferenced and analyzed for height, circumference and vitality (inhabited or not). The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality), 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.
Resumo:
Biological N fixation in forage legumes is an important alternative to reduce pasture degradation, and is strongly influenced by the inoculant symbiotic capability. This paper evaluates the effectiveness of Calopo (Calopogonium mucunoides) rhizobial isolated from soil under three vegetation covers of an Argissolo Vermelho-Amarelo of the Dry Forest Zone of Pernambuco. An experiment was conducted evaluating 25 isolates, aside from 5 uninoculated controls with 0; 309; 60; 90 and 120 kg ha-1 N, and a treatment inoculated with the SEMIA 6152 strain. The first cut was performed 45 days after inoculation and a second and third cut after 45-day-intervals. Shoot N content was quantified at all cuts. Shoot dry mass was affected by N rates at all cuts. Shoot dry mass increased from the first to the second cut in inoculated plants. There was no difference between rhizobial isolates from the different plant covers for any of the variables. Most variables were significantly and positively correlated.
Resumo:
ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.
Resumo:
The experiment was carried out on unsterilized field soil with low phosphorus availability with the objective of examining the effect of cultural practices on mycorrhizal colonization and growth of common bean. The treatments were: three pre-crops (maize, wheat and fallow) followed by three soil management practices ("ploughing", mulching and bare fallow without "ploughing" during the winter months). After the cultural practices, Phaseolus vulgaris cv. Canadian Wonder was grown in this soil. Fallowing and soil disturbance reduced natural soil infectivity. Mycorrhizal infection of the bean roots occurred more rapidly in the recently cropped soil than in the fallow soil. Prior cropping with a strongly mycorrhizal plant (maize) increased infectivity even further.
Resumo:
Arcelin is a seed protein found in wild beans (Phaseolus vulgaris) which gives resistance to Mexican bean weevil, Zabrotes subfasciatus (Boheman 1833) (Coleoptera: Bruchidae). Studies were carried out with the objective of estimating the effect of four alleles of protein arcelin (Arc1, Arc2, Arc3 and Arc4) on the biology of Z. subfasciatus. The experiment was carried out in laboratory at Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, in Santo Antônio de Goiás, GO, Brazil, under non controlled conditions. The highest levels of antibiosis to Z. subfasciatus were observed in Arc1, with reduction in the number of eggs, number of emerged adults, adults longevity. In the line Arc2 only reduction in the number of emerged adults was observed. The lines Arc3 and Arc4 showed low efficiency on the reduction of progeny of Z. subfasciatus and effects in the longevity and egg-adult cycle were not detected. Insect sexual ratio was not altered by the presence of Arc1, Arc2, Arc3 and Arc4 in the seeds.
Resumo:
Laboratory and greenhouse studies were conducted with an artificial dry diet to rear nymphs, and with an artificial plant as substrate for egg laying by the southern green stink bug, Nezara viridula (L.). The artificial diet was composed of: soybean protein (15 g); potato starch (7.5 g); dextrose (7.5 g); sucrose (2.5 g); cellulose (12.5 g); vitamin mixture (niacinamide 1 g, calcium pantothenate 1 g, thiamine 0.25 g, riboflavin 0.5 g, pyridoxine 0.25 g, folic acid 0.25 g, biotin 0.02 mL, vitamin B12 1 g - added to 1,000 mL of distilled water) (5.0 mL); soybean oil (20 mL); wheat germ (17.9 g); and water (30 mL). Nymphs showed normal feeding behavior when fed on the artificial diet. Nymphal development time was longer than or similar to that of nymphs fed on soybean pods. Total nymphal mortality was low (ca. 30%), both for nymphs reared on the artificial diet, and for nymphs fed on soybean pods. At adult emergence, fresh body weights were significantly (P<0.01) less on the artificial diet than on soybean pods. Despite the lower adult survivorship and fecundity on artificial plants than on soybean plants, it was demonstrated for the first time that a model simulating a natural plant, can be used as a substrate for egg mass laying, in conjunction with the artificial diet.
Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops
Resumo:
The objective of this work was to determine the influence of Zn, Mn and Cu on shoot dry matter yield and uptake of macro and micronutrients in upland rice, common bean and corn. Six greenhouse experiments were conducted using a Dark Red Latosol (Typic Haplusthox). Treatments consisted of application of Zn at 0, 5, 10, 20, 40, 80 and 120 mg kg-1, of Mn at 0, 10, 20, 40, 80, 160, 320 and 640 mg kg-1 and of Cu application at 0, 2, 4, 8, 32, 64 and 96 mg kg-1. Zinc increased yield of rice, Mn increased yields of corn and bean and Cu improved yields of rice and bean. Uptake of N, Ca, and Cu in rice was decreased by zinc treatment. In common bean, uptake of N, Mg, and Cu was increased by zinc application, whereas, uptake of P was decreased. Manganese increased uptake of Mg, Zn and Fe and decreased uptake of Ca, in corn. Uptake of K, Zn and Mn was increased and uptake of P and Cu was decreased by Mn application, in bean. Copper had positive and negative interactions in the uptake of macro and micronutrients, depending on crop species and nutrients involved.
Resumo:
The objective of this work was to determine the most susceptible nymphal stage of Bemisia tabaci biotype B to neem (Azadirachta indica A. Juss.) oil applied to dry bean (Phaseolus vulgaris L.) in a screenhouse. A solution of commercial oil (Dalneem) extracted from neem seeds was sprayed directly on each nymphal instar at 0, 0.1, 0.25, 0.5, 1 and 2% concentrations for lethal concentration (LC) determination, and at 0, 0.5 and 1% concentrations for lethal time (LT) determination. The number of living and dead nymphs was recorded five days after spraying for LC determination, and daily during six days for LT determination. The LC50 estimated for fourth instar nymphs occurred at 0.56% concentration. For all instars, LC50 and LC95 were estimated at 0.32 and 2.78% concentrations, respectively. The estimated values of LT50 at 1% concentration were 2.46, 4.45, 3.02 and 6.98 days for the first to fourth instars, respectively. The LT50 occurred at five days for 0.5% and at four days for 1% concentration in all instars. A mortality rate of over 80% was observed on the 6th day for the first to third instars at 1% concentration. The first three nymphal stages were more susceptible to neem oil when compared to the fourth nymphal stage.
Resumo:
The objective of this work was to evaluate the use of a low-cost trap to capture Cerambycidae in different seasons in planted forests in Brazil. Thirty polyethylene-terephthalate trap bottles per hectare were used, disposed at every 50 m. The traps were red painted and contained glass flasks with a mixture of ethanol, methanol and benzaldehyde. There were soap and water at the trap bottom. The traps were checked biweekly for beetle presence. Sampling time required one minute per sample, and traps were easy to use. Total sampling cost, including materials and labor, was US$ 13.46 per sample. Six Cerambycidae species were captured along the dry and rainy seasons.
Resumo:
The objective of this work was to develop and validate linear regression models to estimate the production of dry matter by Tanzania grass (Megathyrsus maximus, cultivar Tanzania) as a function of agrometeorological variables. For this purpose, data on the growth of this forage grass from 2000 to 2005, under dry‑field conditions in São Carlos, SP, Brazil, were correlated to the following climatic parameters: minimum and mean temperatures, degree‑days, and potential and actual evapotranspiration. Simple linear regressions were performed between agrometeorological variables (independent) and the dry matter accumulation rate (dependent). The estimates were validated with independent data obtained in São Carlos and Piracicaba, SP, Brazil. The best statistical results in the development and validation of the models were obtained with the agrometeorological parameters that consider thermal and water availability effects together, such as actual evapotranspiration, accumulation of degree‑days corrected by water availability, and the climatic growth index, based on average temperature, solar radiation, and water availability. These variables can be used in simulations and models to predict the production of Tanzania grass.