149 resultados para Diode array UV spectroscopy
Resumo:
Avaliaram-se os efeitos da aspersão hidrotérmica e da radiação UV-C no controle pós-colheita da podridão olho-de-boi (POB) em maçãs 'Fuji', após um e oito meses de armazenamento, e 'Gala', após cinco meses de armazenamento, ambas sob condição de atmosfera controlada (AC). Esses frutos foram inoculados ou mantidos com infecção natural de Cryptosporiopsis perennans. As maçãs 'Fuji' foram submetidas aos seguintes tratamentos, aplicados em uma linha comercial de seleção: sem tratamento (testemunha); aspersão hidrotérmica (água a 50ºC por 12 segundos); radiação UV-C (0,0069 kJ m-2); e aspersão hidrotérmica + radiação UV-C. As maçãs 'Gala' também foram submetidas a estes tratamentos utilizados em 'Fuji', exceto ao tratamento com aspersão hidrotérmica + radiação UV-C. Após os tratamentos, as maçãs foram incubadas a 22ºC por 15 dias e avaliadas quanto à incidência da doença. Nas maçãs 'Fuji', os tratamentos de aspersão hidrotérmica e/ou radiação UV-C reduziram a incidência da POB nos frutos inoculados e com infecção natural, proporcionando controle superior a 56% e 54%, em relação à testemunha, respectivamente. Em maçãs 'Gala' inoculadas, os tratamentos com aspersão hidrotérmica e radiação UV-C também reduziram o número de unidades formadoras de colônias (UFC) nos frutos, com controle superior a 70%, e a incidência da POB, com controle superior a 69% em relação à testemunha. Em maçãs 'Gala', com infecção natural, estes tratamentos apresentaram controle da POB superior a 85% em relação à testemunha. Os resultados obtidos mostram que os tratamentos com aspersão hidrotérmica e/ou radiação UV-C reduzem a incidência da POB em maçãs 'Fuji' e 'Gala', em linha comercial de seleção. Todavia, o uso da radiação UV-C, em ambas as cultivares, foi o tratamento que apresentou maior benefício e retorno econômico.
Resumo:
Avaliou-se o efeito da radiação UV-C em abacates Hass, quanto ao conteúdo de fenólicos totais, atividade da enzima polifenoloxidase (PPO) e coloração. Os frutos selecionados foram submetidos à radiação em luz UV-C durante 5; 10; 15 e 20 minutos, sendo mantidos sob refrigeração (10 ± 1 ºC e 90±5% UR), e avaliados durante 15 dias. Para o teor fenólicos totais e PPO, não se observou diferença entre os tratamentos dos frutos nos diferentes tempos de exposição à luz UV-C. Os teores fenólicos totais e PPO diminuíram durante o período experimental. Os valores de luminosidade mantiveram-se elevados (85,4 a 88,5) no armazenamento. Os valores de cor a* e b* diminuíram com o armazenamento de forma mais intensa para os frutos submetidos à radiação UV-C. Não houve correlação significativa para a PPO, conteúdo de fenólicos totais e coloração.
Resumo:
ABSTRACT The objective of this study was to evaluate the effect of heat treatment and ultraviolet radiation (UV-C) in the prevention of chilling injury in mangoes cv. Tommy Atkins previously stored or not under injury condition after their transference to ambient condition. Fruits were divided into groups: two were hydrothermally treated (46.1 ºC/90 min; 55 ºC/5 min) and two were exposed to UV-C radiation (1.14 kJ m-2; 2.28 kJ m-2). These groups were stored under chilling injury conditions (5 ºC for 14 days), as established in preliminary tests. Other untreated groups were stored at 12 ºC or 5 ºC. After the storage period, they were transferred to ambient conditions (21.9 ºC; 55% RH) and the quality was evaluated. All the data were submitted to multivariate analysis as the tool to verify the simultaneous effect of the treatments under the quality parameters. The multivariate analysis indicated that the hydrothermal treatments at 46.1 °C/90 min and 55 °C/5 min and the UV-C radiation at doses of 1.14 kJ m-2 and 2.28 kJ m-2 were effective in minimized the symptoms of chilling injury in mangoes ‘Tommy Atkins’ stored at 5 °C for 14 days. However, after their transference to environmental condition at 21.9 °C, only the UV-C kept this control, especially at a dose of 2.28 kJ m-2. This treatment did not prevent the development of the characteristic color or affected the normal ripening and allowed the conservation of fruit for a period of 14 days at 5 °C, plus seven days of storage at environmental condition, which corresponds to the shipping transportation plus the time for sale.
Resumo:
SnO2 thin layers, prepared from aqueous colloidal suspensions by the sol-gel process, have been dip-coated on commercial borosilicate glasses. The effect of the conditions of deposition on the optical and structural characteristics of the thin layers was analysed by UV-Vis spectroscopy, x-ray reflectometry and electron scanning microscopy. Layers prepared with withdrawal speed in between 0.1 and 10cm/min show thickness smaller than 90nm, roughness of the order of 2nm and transmittance higher than 80%, resulting in good optical quality samples. The roughness increases from 2 to 11nm as the withdrawal speed increases from 10 to 80cm/min, what seems to be associated to the enlargement of the layers thickness (> 90nm). The measurements of mass loss, done after etching with fluoridric acid show that the coated samples are more corrosion resistant than the uncoated borosilicate glass.
Resumo:
The main objective of this research was the characterization of the humic fractions isolated from vermicomposting, originating from cattle manure and treated with Eisenea foetida or Lumbricus rubellus, during 3 and 6 months. Elemental analysis and Infrared and UV-vis spectroscopy were used for their characterizations. The results obtained shown that both humic acids are very similar, but six-month humic acid shown lower percentage of organic material than three month humic acid. The spectroscopy analysis shown that the humic acid studied can be compared with other humic acids reported in the literature. By comparing both vermicomposts, the one produced in three months presents a great potential as fertilizer and it is more economical than the vermicompost produced during a six month period.
Resumo:
This review presents the evolution of simultaneous multicomponent analysis by absorption spectrophotometry in the ultraviolet and visual regions in terms of some qualitative and quantitative analysis techniques, otimization methods, as well as applications and modern trends.
Resumo:
Dilutions of methylmetacrylate ranging between 1 and 50 ppm were obtained from a stock solution of 1 ml of monomer in 100 ml of deionised water, and were analyzed by an absorption spectrophotometer in the UV-visible. Absorbance values were used to develop a calibration model based on the PLS, with the aim to determine new sample concentrations. The number of latent variables used was 6, with the standard errors of calibration and prediction found to be 0,048 ml/100 ml and 0,058 ml/100 ml. The calibration model was successfully used to calculate the concentration of monomer released in water, where complete dentures were kept for one hour after polymerization.
Resumo:
These films were obtained by dip coating. Parameters like dislocation velocity; number of deposits, suspension concentration, and number of deposits followed or not by heat treatment between each deposit and calcination temperature were evaluated for establishing the best homogeneity. The obtained films were characterized in terms of their morphology, optical quality and photoluminescence by scanning electron microscopy (SEM), UV-vis absorption spectrophotometry and luminescence spectroscopy, respectively. The morphologic and luminescent characteristics showed dip coating as good laboratory technique for development of thin films for optical applications.
Resumo:
A rapid and sensitive method is described for the determination of clofentezine residues in apple, papaya, mango and orange. The procedure is based on the extraction of the sample with a hexane:ethyl acetate mixture (1:1, v/v) and liquid chromatographic analysis using UV detection. Mean recoveries from 4 replicates of fortified fruit samples ranged from 81% to 96%, with coefficients of variation from 8.9% to 12.5%. The detection and quantification limits of the method were of 0.05 and 0.1 mg kg-1, respectively.
Resumo:
Spectrophotometry is one of the most widespread analytical techniques due to its simplicity, reliability, and low-cost instrumentation for both direct measurements and coupled to other techniques or processes such as chromatography, electrophoresis and flow analysis. However, the application is often limited by sensitivity. This article describes some advances that greatly improve the performance of spectrophotometric measurements, especially in order to increase sensitivity, including the employment of liquid-core waveguides and solid-phase spectrophotometry.
Resumo:
Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.
Resumo:
Fast atom bombardment mass spectroscopy has been used to study a large number of cationic phosphine-containing transition-metal-gold clusters, which ranged in mass from 1000 to 4000. Many of these clusters have been previously characterized and were examined in order to test the usefulness of the FABMS technique. Results showed that FABMS is excellent in giving the correct molecular formula and when combined with NMR, IR, and microanalysis gave a reliable characterization for cationic clusters¹. Recently FABMS has become one of the techniques employed as routine in cluster characterization2,3 and also is an effective tool for the structure analysis of large biomolecules4. Some results in the present work reinforce the importance of these data in the characterization of clusters in the absence of crystals with quality for X-ray analysis.
Resumo:
In this work we describe the processing of poly(styrene sulphonate) films (PSS) doped with neodymium (Nd). Optical density measurements in the UV-Vis-NIR region show the typical bands observed for neodymium chloride (NdCl3) in solution. In the case of films, the intensity ratio between the peaks at 800 nm (4I9/2 -> 4F5/2 + ²H7/2) and 580 nm (4I9/2 -> 4G5/2 + ²G7/2) is equal to 0.83. Infrared spectra present an enhancement in the absorption region of aromatic rings. Site selective luminescence spectroscopy shows that the incorporation of Nd introduces a hipsochromic shift and a line shape definition in UV luminescence compared to PSS film, decreasing the interaction between aromatic groups. In addition, the film exhibits an intense radiative transition at 1061 nm (4F3/2->4I11/2), comparable to the one present in crystalline materials doped with Nd.
Resumo:
This paper summarizes the result of a degradation test of two azo-reactive dyes (Reactive Blue 214, Reactive Red 243) under UV irradiation in the presence of H2O2. Five different doses of hydrogen peroxide (0 mM, 5 mM, 10 mM, 20 mM and 30 mM) at constant initial concentration of the substrate (100 mg/L) were used. The radiation source were three 15 W-lamps. Complete destruction of the color of the solutions was attained in 40-50 min of irradiation. UV/H2O2 proved capable of complete discoloration and degradation of the above azo reactive dyes.