49 resultados para Delay in payment
Resumo:
Studies on rats maintained on low-protein-calorie diets during the lactation period show that food intake decreases. This process results in weight loss and a delay in litter development. The purpose of the present study was to determine the alterations in food intake, maternal weight and litter growth during lactation when dams were exposed to diets with different levels of protein and carbohydrate. Female Wistar rats receiving one of 4 different diets, A (N = 14), B (N = 14), C (N = 9) and D (N = 9), were used. Diet A contained 16% protein and 66% carbohydrate; diet B, 6% protein and 77% carbohydrate; diet C, 6% protein and 66% carbohydrate; diet D, 16% protein and 56% carbohydrate. Thus, C and D diets were hypocaloric, while A and B were isocaloric. The intake of a low-protein diet in groups B and C affected the weight of dams and litters during the last two weeks of lactation, while the low-calorie diets limited the growth of D litters at 21 days compared with A litters, but had no effect on the weight of D dams. Group B showed an increase in intake during the first five days of lactation, resulting in a behavioral calorie compensation due to the increase in carbohydrate content, but the intake decreased during the last part of lactation. Food intake regulation predominantly involves the recruitment of a variety of peripheral satiety systems that attempt to decrease the central feeding command system.
Resumo:
Analysis of regional corpus callosum fiber composition reveals that callosal regions connecting primary and secondary sensory areas tend to have higher proportions of coarse-diameter, highly myelinated fibers than callosal regions connecting so-called higher-order areas. This suggests that in primary/secondary sensory areas there are strong timing constraints for interhemispheric communication, which may be related to the process of midline fusion of the two sensory hemifields across the hemispheres. We postulate that the evolutionary origin of the corpus callosum in placental mammals is related to the mechanism of midline fusion in the sensory cortices, which only in mammals receive a topographically organized representation of the sensory surfaces. The early corpus callosum may have also served as a substrate for growth of fibers connecting higher-order areas, which possibly participated in the propagation of neuronal ensembles of synchronized activity between the hemispheres. However, as brains became much larger, the increasingly longer interhemispheric distance may have worked as a constraint for efficient callosal transmission. Callosal fiber composition tends to be quite uniform across species with different brain sizes, suggesting that the delay in callosal transmission is longer in bigger brains. There is only a small subset of large-diameter callosal fibers whose size increases with increasing interhemispheric distance. These limitations in interhemispheric connectivity may have favored the development of brain lateralization in some species like humans. "...if the currently received statements are correct, the appearance of the corpus callosum in the placental mammals is the greatest and most sudden modification exhibited by the brain in the whole series of vertebrated animals..." T.H. Huxley (1).
Resumo:
After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.
Resumo:
OBJECTIVE: Payment for performance financial incentive schemes reward doctors based on the quality and the outcomes of their treatment. In Brazil, the Ministry of Health is looking to scale up its use in public hospitals and some municipalities are developing payment for performance schemes even for the Family Health Programme. In this article the Quality and Outcomes Framework used in the UK since 2004 is discussed, as well as its experience to elaborate some important lessons that Brazilian municipalities should consider before embarking on payment for performance scheme in primary care settings.