49 resultados para DIRECT ETHANOL FUEL CELL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphine is a potent analgesic opioid used extensively for pain treatment. During the last decade, global consumption grew more than 4-fold. However, molecular mechanisms elicited by morphine are not totally understood. Thus, a growing literature indicates that there are additional actions to the analgesic effect. Previous studies about morphine and oxidative stress are controversial and used concentrations outside the range of clinical practice. Therefore, in this study, we hypothesized that a therapeutic concentration of morphine (1 μM) would show a protective effect in a traditional model of oxidative stress. We exposed the C6 glioma cell line to hydrogen peroxide (H2O2) and/or morphine for 24 h and evaluated cell viability, lipid peroxidation, and levels of sulfhydryl groups (an indicator of the redox state of the cell). Morphine did not prevent the decrease in cell viability provoked by H2O2 but partially prevented lipid peroxidation caused by 0.0025% H2O2 (a concentration allowing more than 90% cell viability). Interestingly, this opioid did not alter the increased levels of sulfhydryl groups produced by exposure to 0.0025% H2O2, opening the possibility that alternative molecular mechanisms (a direct scavenging activity or the inhibition of NAPDH oxidase) may explain the protective effect registered in the lipid peroxidation assay. Our results demonstrate, for the first time, that morphine in usual analgesic doses may contribute to minimizing oxidative stress in cells of glial origin. This study supports the importance of employing concentrations similar to those used in clinical practice for a better approximation between experimental models and the clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL) and the shoot (0.5 mg/mL) extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.