101 resultados para DEMINERALIZED BONE
Resumo:
The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU) were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.
Resumo:
Mesenchymal stem cells (MSC) are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs). The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes). To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3). The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6)) cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h). The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h).The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h) to 21.29µm (120h). However, at P3, the nucleus length was 26.35µm (24h) and 25.22µm (120h). This information could be important for future application and use of feline BM-MSCs.
Resumo:
Abstract: Chlorocebus aethiops is a species of non-human primate frequently used in biomedical research. Some research involves this species as an experimental model for various diseases and possible treatment with stem cells. The bone marrow is one of the main sources of these cells and provides easy access. The aim of this study was to standardize the protocol of collection and separation of bone marrow in C. aethiops. Ten animals were submitted to puncture of bone marrow with access to the iliac crest and cell separation by density gradient. The bone marrow of C. aethiops had an average of 97% viability. From the results achieved, we can conclude that C. aethiops is an excellent model to obtain and isolate mononuclear cells from bone marrow, fostering several studies in the field of cell therapy.
Resumo:
The organophosphorus insecticide Nuvacron (Monocrotophos) is a very toxic agent widely utilized in Brazilian agriculture. To evaluate the clastogenic potential of this insecticide, in vivo and in vitro micronucleus (MN) assay experiments were carried out on Swiss mice and on Chinese hamster ovary (CHO) cells, respectively. Nuvacron administered at doses of 2.5 and 5.0 mg/kg induced a statistically significant increase in the frequencies of MN detected in polychromatic bone marrow erythrocytes from animals (six/group) treated ip 24 h before. Exponentially growing CHAO cells were treated continuously (16h) with Nuvacron diluted in water to final concentrations of 1, 10, 100, 200, and 400 mug/ml. Three experiments were carried out using the cytokinesis-block method and a total of 6000 binucleated cells were scored to determine MN frequencies. A statistically significant increase in the frequencies of MN was observed for the cells treated with 1 and 10 mug/ ml Nuvacron. A marked decrease in cell proliferation rates was observed for CHO cultures treated with higher concentrations. These data demonstrate that Nuvacron has a genotoxic effect on both in vivo and in vitro mammalian test systems.
Resumo:
Studies on the association between vitamin D receptor (VDR) polymorphism and bone mineral density (BMD) in different populations have produced conflicting results probably due to ethnic differences in the populations studied. The Brazilian population is characterized by a very broad genetic background and a high degree of miscegenation. Of an initial group of 164, we studied 127 women from the city of São Paulo, aged 20 to 47 years (median, 31 years), with normal menses, a normal diet and no history of diseases or use of any medication that could alter BMD. VDR genotype was assessed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. BMD was measured using dual energy X-ray absorptiometry (Lunar DPX) at the lumbar site (L2-L4) and femoral neck. Most of the women (77.6%) were considered to be of predominantly European ancestry (20.6% of them reported also native American ancestry), 12.8% were of African-Brazilian ancestry and 9.6% of Asian ancestry, 41.0% (52) were classified as bb, 48.8% (62) as Bb and 10.2% (13) as BB. The BB, Bb and bb groups did not differ in age, height, weight, body mass index or age at menarche. Lumbar spine BMD was significantly higher in the bb group (1.22 ± 0.16 g/cm²) than in the BB group (1.08 ± 0.14; P<0.05), and the Bb group presented an intermediate value (1.17 ± 0.15). Femoral neck BMD was higher in the bb group (0.99 ± 0.11 g/cm²) compared to Bb (0.93 ± 0.12) and BB (0.90 ± 0.09) (P<0.05). These data indicate that there is a significant correlation between the VDR BsmI genotype and BMD in healthy Brazilian premenopausal females.
Resumo:
Osteoporosis is a major health problem. Little is known about the risk factors in premenopause. Sixty 40-50-year old patients with regular menses were studied cross-sectionally. None of the patients were on drugs known to interfere with bone mass. Patients answered a dietary inquiry and had their bone mineral density (BMD) measured. The Z scores were used for the comparisons. A blood sample was taken for the determination of FSH, SHBG, estradiol, testosterone, calcium and alkaline phosphatase. Calcium and creatinine were measured in 24-h urine. A Z score less than -1 was observed for the lumbar spine of 14 patients (23.3%), and for the femur of 24 patients (40%). Patients with a Z score less than -1 for the lumbar spine were older than patients with a Z score ³-1 (45.7 vs 43.8 years) and presented higher values of alkaline phosphatase (71.1 ± 18.2 vs 57.1 ± 14.3 IU/l). Multiple regression analysis showed that a lower lumbar spine BMD was associated with higher values of alkaline phosphatase, lower calcium ingestion, a smaller body mass index (BMI), less frequent exercising, and older age. The patients with a Z score less than -1 for the femur were shorter than patients with a Z score ³-1 (158.2 vs 161.3 cm). Multiple regression analysis showed that a lower femoral BMD was associated with lower BMI, higher alkaline phosphatase and caffeine intake, and less frequent exercising. A lower than expected BMD was observed in a significant proportion of premenopausal women and was associated with lower calcium intake, relatively lower physical activity and lower BMI. We conclude that the classical risk factors for osteoporosis may be present before ovarian failure, and their effect may be partly independent of estrogen levels.
Resumo:
Heart transplantation is associated with rapid bone loss and an increased prevalence and incidence of fractures. The aim of the present study was to compare the bone mineral density (BMD) of 30 heart transplant (HT) recipients to that of 31 chronic heart failure (CHF) patients waiting for transplantation and to determine their biochemical markers of bone resorption and hormone levels. The BMD of lumbar spine and proximal femur was determined by dual-energy X-ray absorptiometry. Anteroposterior and lateral radiographs of the thoracic and lumbar spine were also obtained. The mean age of the two groups did not differ significantly. Mean time of transplantation was 25.4 ± 21.1 months (6 to 88 months). Except for the albumin levels, which were significantly higher, and magnesium levels, which were significantly lower in HT patients when compared to CHF patients, all other biochemical parameters and hormone levels were within the normal range and similar in the two groups. Both groups had lower BMD of the spine and proximal femur compared to young healthy adults. However, the mean BMD of HT patients was significantly lower than in CHF patients at all sites studied. Bone mass did not correlate with time after transplantation or cumulative dose of cyclosporine A. There was a negative correlation between BMD and the cumulative dose of prednisone. These data suggest that bone loss occurs in HT patients mainly due to the use of corticosteroids and that in 30% of the patients it can be present before transplantation. It seems that cyclosporine A may also play a role in this loss.
Resumo:
The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM). Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4% casein as compared to 20% casein in the control diet. When the experimental group had attained a 20% loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5%) and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase) and laminin (4.8-fold increase) when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice.
Resumo:
Bone mineral density (BMD) in the lumbar spine (LSBMD), femoral neck (FNBMD) and whole body (WBBMD) and whole body tissue composition were evaluated in 288 Brazilian men 50 years and older, 80% white and 20% Mulattoes. Age was inversely correlated with WBBMD (r = -0.20) and FNBMD (r = -0.21) but not with LSBMD (r = 0.03). Body mass index and weight showed a strong positive correlation with WBBMD (r = 0.48 and 0.54), LSBMD (r = 0.37 and 0.45) and FNBMD (r = 0.42 and 0.48). Correlation with height was positive but weaker. No significant bone loss at the lumbar spine level was observed as the population aged. FNBMD and WBBMD decreased significantly only in the last decade (age 70-79) studied. BMD was higher for Brazilian men as compared to Brazilian women at all sites. No significant differences were observed between Brazilian and the US/European male population for BMD in the femoral neck. BMD measured by dual-energy X-ray absorptiometry in South American men is reported here for the first time. A decrease in FNBMD was detected only later in life, with a pattern similar to that described for the US/European male population.
Resumo:
The distinction between normal and leukemic bone marrow (BM) B-precursors is essential for the diagnosis and treatment monitoring of acute lymphoblastic leukemia (ALL). In order to evaluate the potential use of quantitative fluorescence cytometry (QFC) for this distinction, we studied 21 normal individuals and 40 patients with CD10+ ALL. We characterized the age-related changes of the CD10, CD19, TdT, CD34 and CD79a densities in normal and leukemic BM. Compared to normal adults, the B-precursors from normal children expressed significantly lower values of CD34-specific antibody binding capacity (SABC) (median value of 86.6 vs 160.2 arbitrary units (a.u.) in children and adults, respectively). No significant age-related difference was observed in the expression of the other markers in the normal BM, or in any of the markers in the leukemic BM. Based on the literature, we set the cut-off value for the normal CD10 expression at 45 x 10³ a.u. for both age groups. For the remaining markers we established the cut-off values based on the minimum-maximum values in the normal BM in each age group. The expression of CD10 was higher than the cut-off in 30 ALL cases and in 18 of them there was a concomitant aberrant expression of other markers. In 9 of the 10 CD10+ ALL with normal CD10 SABC values, the expression of at least one other marker was aberrant. In conclusion, the distinction between normal and leukemic cells by QFC was possible in 38/40 CD10+ ALL cases.
Resumo:
The authors performed a study of bone mass in eutrophic Brazilian children and adolescents using dual-energy X-ray absorptiometry (DXA) in order to obtain curves for bone mineral content (BMC) and bone mineral density (BMD) by chronological age and correlate these values with weight and height. Healthy Caucasian children and adolescents, 120 boys and 135 girls, 6 to 14 years of age, residents of São Paulo, Brazil, were selected from the Pediatric Department outpatient clinic of Hospital São Paulo (Universidade Federal de São Paulo). BMC, BMD and the area of the vertebral body of the L2-L4 segment were obtained by DXA. BMC and BMD for the lumbar spine (L2-L4) presented a progressive increase between 6 and 14 years of age in both sexes, with a distribution that fitted an exponential curve. We identified an increase of mineral content in female patients older than 11 years which was maintained until 13 years of age, when a new decrease in the velocity of bone mineralization occurred. Male patients presented a period of accelerated bone mass gain after 11 years of age that was maintained until 14 years of age. At 14 years of age the mean BMD values for boys and girls were 0.984 and 1.017 g/cm², respectively. A stepwise multiple regression analysis of paired variables showed that the "vertebral area-age" pair was the most significant in the determination of BMD values and the introduction of a third variable (weight or height) did not significantly increase the correlation coefficient.
Resumo:
The objective of the present study was to evaluate the effect of 17ß-estradiol or alendronate in preventing bone loss in 3-month-old ovariectomized Wistar rats. One group underwent sham ovariectomy (control, N = 10), and the remaining three underwent double ovariectomy. One ovariectomized group did not receive any treatment (OVX, N = 12). A second received subcutaneous 17ß-estradiol at a dose of 30 µg/kg for 6 weeks (OVX-E, N = 11) and a third, subcutaneous alendronate at a dose of 0.1 mg/kg for 6 weeks (OVX-A, N = 8). Histomorphometry, densitometry, osteocalcin and deoxypyridinoline measurements were applied to all groups. After 6 weeks there was a significant decrease in bone mineral density (BMD) at the trabecular site (distal femur) in OVX rats. Both alendronate and 17ß-estradiol increased the BMD of ovariectomized rats, with the BMD of the OVX-A group being higher than that of the OVX-E group. Histomorphometry of the distal femur showed a decrease in trabecular volume in the untreated group (OVX), and an increase in the two treated groups, principally in the alendronate group. In OVX-A there was a greater increase in trabecular number. An increase in trabecular thickness, however, was seen only in the OVX-E group. There was also a decrease in bone turnover in both OVX-E and OVX-A. The osteocalcin and deoxypyridinoline levels were decreased in both treated groups, mainly in OVX-A. Although both drugs were effective in inhibiting bone loss, alendronate proved to be more effective than estradiol at the doses used in increasing bone mass.
Resumo:
In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F) was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP) compared to normal controls (NC). For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2) by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM) of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46%) LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%). Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml) compared to NC (18.5 ± 0.9 pg/ml). In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.
Resumo:
Matrix metalloproteinases (MMP) are considered to be key initiators of collagen degradation, thus contributing to bone resorption in inflammatory diseases. We determined whether subantimicrobial doses of doxycycline (DX) (<=10 mg kg-1 day-1), a known MMP inhibitor, could inhibit bone resorption in an experimental periodontitis model. Thirty male Wistar rats (180-200 g) were subjected to placement of a nylon thread ligature around the maxillary molars and sacrificed after 7 days. Alveolar bone loss (ABL) was measured macroscopically in one hemiarcade and the contralateral hemiarcade was processed for histopathologic analysis. Groups of six animals each were treated with DX (2.5, 5 or 10 mg kg-1 day-1, sc, 7 days) and compared to nontreated (NT) rats. NT rats displayed significant ABL, severe mononuclear cell influx and increase in osteoclast numbers, which were significantly reduced by 5 or 10 mg kg-1 day-1 DX. These data show that DX inhibits inflammatory bone resorption in a manner that is independent of its antimicrobial properties.
Resumo:
Osteoporosis is a multifactorial disease with great impact on morbidity and mortality mainly in postmenopausal women. Although it is recognized that factors related to life-style and habits may influence bone mass formation leading to greater or lower bone mass, more than 85% of the variation in bone mineral density (BMD) is genetically determined. The collagen type I alpha 1 (COLIA1) gene is a possible risk factor for osteoporosis. We studied a population of 220 young women from the city of São Paulo, Brazil, with respect to BMD and its correlation with both COLIA1 genotype and clinical aspects. The distribution of COLIA1 genotype SS, Ss and ss in the population studied was 73.6, 24.1 and 2.3%, respectively. No association between these genotypes and femoral or lumbar spine BMD was detected. There was a positive association between lumbar spine BMD and weight (P<0.0001), height (P<0.0156), and body mass index (BMI) (P<0.0156), and a negative association with age at menarche (P<0.0026). There was also a positive association between femoral BMD and weight (P<0.0001), height (P<0.0001), and BMI (P<0.0001), and a negative correlation with family history for osteoporosis (P<0.041). There was no association between the presence of allele s and reduced BMD. We conclude that a family history of osteoporosis and age at menarche are factors that may influence bone mass in our population.