76 resultados para Combustiveis diesel - Toxicologia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaking of diesel oil from gas stations is frequent in Brazil. The presence of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic is an indication of contamination by heavy hydrocarbons from diesel oil. Here were present the determination of the distribution coefficient (Kd) of benzo(a)pyrene (the most carcinogenic of the PAHs) in tropical soils using the sorption isotherm model. The sorption curves acquired for benzo(a)pyrene were of the S-type, probably due to the water/methanol experimental conditions. The sorption curves allowed calculation of the distribution coefficient (Kd). The experimental Kd values were lower than those calculated from literature Koc values (partition coefficient normalized by organic carbon), due mainly to the cosolvency effect and the percentage of organic matter and clay in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel was obtained by transesterification of babassu oil in anhydrous ethanol and methanol, employing NaOH as catalyst. The products obtained were characterized by physico-chemical and thermogravimetric analysis. It could be concluded that the properties of the two types of biodiesel (ethanolic and methanolic) are very similar when compared with diesel oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodically, during petroleum shortages, vegetable oils and their derivatives have been proposed as alternatives to petroleum diesel fuel. Different approaches have been proposed, including the use of pure vegetable oils (or blends) or their derivatives. Indeed, the use of fatty-acid methyl or ethyl esters (usually known as "biodiesel") produced by alcoholysis of triacylglycerides or esterification of fatty acids was initially proposed in Belgium 70 years ago, when the first world patent was deposited. Recently, foreign dependence on diesel fuel and the petroleum crisis have increased the discussion in Brazil on starting to use alternatives to diesel fuel, being biodiesel the alternative of choice for a large petroleum diesel substitution program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims at assessing the influence of pollution from mobile sources on air quality in the Metropolitan Area of Porto Alegre by means of an inventory based on methods applied specifically to vehicular emissions. The study uses the method described by CETESB, based on inventories on vehicular emissions, according to USEPA methodology. Following fuel types were taken into account: gasoline (24% ethanol), alcohol, diesel oil, and CNG (compressed natural gas). Results have shown that gasoline-powered vehicles are still responsible for emitting the highest CO and HC concentrations, while diesel-powered vehicles are the source of highest NOx, MP and SOx concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to investigate biosurfactant production in solid state by Aspergillus fumigatus in fixed-bed column bioreactors using substrate based on agricultural residues. Without a supplementary carbon source the highest emulsifying activity (EA) was 11.17 emulsifying units (EU) g-1 of substrate at an aeration rate of 148 mL h-1g-1 but in the presence of diesel oil the highest EA value was 9.99 EU g-1 at an aeration rate of 119 mL h-1g-1 of substrate while supplementation with soya oil resulted in only 8.47 EU g-1 of substrate at an aeration rate of 119 mL h-1g-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-renewable biomass, such as coal, oil and natural gas are not only energy sources but also important starting materials for the production of a variety of chemicals ranging from gasoline, diesel oil and fine chemicals. In this regard, carbohydrates, the most abundant class of enantiopure organic compounds, are very suitable for generation of chemicals of great practical value. Their bulk-scale availability associated with low cost make them unique starting materials for organic preparative purpose. They are a most attractive alternative for construction of enantiopure target molecules by asymmetric synthesis. This review addresses, in addition to the use of low molecular weight carbohydrates, issues related to renewable biomass from photosynthesis and alternatives for the production of bulk and fine chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodically, during petroleum shortage, fatty acids and their derivatives have been used as alternative fuels to those derived from petroleum. Different approaches have been proposed, including the use of neat fats and oils or their derivatives. Indeed, the utilization of biodiesel produced by alcoholysis of triacilglycerides or esterification of fatty acids, or hydrocarbons obtained from cracking of fatty materials were studied and used in several countries. Increasing concerns about energy security and climate changes have lead several countries, including Brazil, to start up biofuels programs. Different technologies are currently being developed in order to produce biofuels with economical feasibility. In this work are discussed alternative fatty raw-materials and processing technologies that are currently being studied in order to produce fuels suitable to sustainable substitute diesel fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuels and biofuels have a major importance in the transportation sector of any country, contributing to their economic development. The utilization of these fuels implies their closer contact to metallic materials, which comprise vehicle, storage, and transportation systems. Thus, metallic corrosion could be related to fuels and biofuels utilization. Specially, the corrosion associated to gasoline, ethanol, diesel, biodiesel, and their mixtures is discussed in this article. Briefly, the ethanol is the most corrosive and gasoline the least. Few investigations about the effect of biodiesel indicate that the corrosion is associated to their unsaturation degree and the corrosion of diesel is related to its acidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct infusion electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS and Fourier transform infrared spectroscopy (FTIR) were used together with partial least squares (PLS) as a tool to determine B3 adulteration (B3 - mixture of 3% v/v of biodiesel in diesel) with kerosene and residual oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines traditional and new routes for removal of H2S and other sulfur compounds from spent sufidic caustic (SSC). SH- (hydrogenosulfide) and S2- (sulfide) ions were quantitatively oxidized at 25 ºC using H2O2, NaOCl or a spent sulfochromic mixture. SH-/S2- ions were also removed via reaction with freshly prepared iron or manganese hydroxides, or after passing the SSC through strong basic anion exchange resins (OH- form). The treated caustic solution, as well as iron/manganese hydroxides, removed H2S from diesel samples at 25 ºC. SSC treatment via strong basic anion-exchange resins produced the treated caustic solution with the highest free alkalinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalgae biomass has been described by several authors as the raw material with the greatest potential to meet the goals of replacing petroleum diesel by biodiesel while not competing with arable land suitable for food production. Research groups in different countries are seeking the most appropriate production model for productivity, economic viability and environmental sustainability. This review focused on recent advances and challenges of technology for the production of biodiesel from microalgae, including the procedures used to obtain biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.