79 resultados para Combined spinal-epidural
Resumo:
O objetivo deste experimento foi isolar a musculatura epaxial da medula espinhal de cães submetidos à laminectomia dorsal modificada (LDM) e averiguar se os músculos influenciaram na formação da fibrose epidural, na compressão medular e no aparecimento dos sinais neurológicos. Para isso, dez cães hígidos foram submetidos à LDM entre as vértebras T13 e L1 e distribuídos aleatoriamente em dois grupos denominados controle (I) onde a medula espinhal permaneceu exposta sem a presença de implante, e tratado (II)onde foi colocado um im-plante a base de alumínio entre a musculatura epaxial adjacente e a medula espinhal exposta pela LDM. As avaliações constaram de exames neurológicos diários até 180 dias de pós-operatório (PO); mielografia, decorridos 15, 30 e 60 dias de PO; e avaliação macroscópica mediante a reintervenção cirúrgica. Não houve diferença durante as avaliações neurológicas. Aos 15 dias de PO, foi verificado na mielografia, que o grau de compressão da linha de contraste foi maior no grupo tratado (P<0,05) quando comparado ao grupo controle, não havendo diferença dos demais tempos estudados. Na avaliação macroscópica, pode-se observar que no Grupo II, a musculatura epaxial adjacente à medula espinhal não estava em contato com a fibrose epidural, diferentemente do grupo controle. O implante pôde ser removido facilmente e apresentava discreto grau de deformidade crânio-dorsal. Pode-se concluir que a musculatura epaxial adjacente é isolada da medula espinhal pelo implante à base de alumínio em cães submetidos à LDM, e esta não influencia na formação da fibrose epidural, compressão medular e no aparecimento dos sinais neurológicos.
Resumo:
The aim of this study was to describe the topography of the spinal cord of the red-footed tortoise to establish a morphological basis for applied research in anesthesiology and morphology. Six tortoises from the state of Maranhão (Brazil) that had died of natural causes were used. The common carotid artery was used to perfuse the arterial system with saline solution (heated to 37ºC) and to fix the material with a 20% formaldehyde solution. The specimens were then placed in a modified decalcifying solution for 72 hours to allow dorsal opening of the carapace with a chisel and an orthopedic hammer. Dissection of the dorsal musculature and sectioning of the vertebral arches were performed to access the spinal cord. The results revealed the spinal cord of G. carbonaria to be an elongated, whitish mass that reached the articulation between the penultimate and last caudal vertebrae. The cervical intumescence (Intumescentia cervicalis) was located between vertebral segments C5 and T1, whereas the lumbosacral intumescence (Intumescentia lumbalis) was located between T6 and Ca1.
Resumo:
Resumo: Com este estudo objetivou-se descrever a topografia do cone medular do macaco-prego (Sapajus libidinosus) a fim de fornecer suporte para que a realização de procedimentos anestésicos, bem como exames de mielografia e coleta de líquor, dentre outros procedimentos que utilizam a via epidural. Para tanto foram dissecados oito animais, sendo seis machos e duas fêmeas, de diferentes faixas etárias. Rebateu-se a pele para retirada da musculatura da região dorsal, exposição de toda a coluna vertebral e identificação das vértebras lombares e sacrais. Para estabelecer o final da medula espinhal e medir o comprimento do cone medular, foi aberto todo o canal vertebral lombossacro, seccionando-se lateralmente os arcos vertebrais. Em seguida a duramáter foi seccionada para visualização do cone medular e observação da relação topográfica deste com as vértebras. Todos os animais apresentaram cinco vértebras lombares e três vértebras sacrais. As vértebras se apresentaram, de forma geral, muito próximas e com os processos espinhosos bem desenvolvidos e direcionados em sentido cranial. O cone medular dos macacos-prego situou-se entre as vértebras L2 e L5, com a base localizando-se com maior frequência na altura da vértebra L3, enquanto o ápice em L4. O comprimento corporal (espaço interarcual occiptoatlântico até o espaço interarcual sacrocaudal) variou de 22,9 a 31,8cm, com média de 27,44 ±3,1cm enquanto que comprimento do cone medular variou de 1,70 a 3,51cm, com média de 2,47 ±0,57cm. Não houve correlação entre o tamanho do corpo e o comprimento do cone medular (r = 0,212). Conclui-se que apesar das variações do comprimento e posicionamento do cone medular, o seu ápice não ultrapassa a articulação lombossacral, tornando seguro o acesso ao espaço epidural por esta via.
Resumo:
This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC) of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis), from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.
Resumo:
Seven selection indexes based on the phenotypic value of the individual and the mean performance of its family were assessed for their application in breeding of self-pollinated plants. There is no clear superiority from one index to another although some show one or more negative aspects, such as favoring the selection of a top performing plant from an inferior family in detriment of an excellent plant from a superior family
Resumo:
Multiple episodes of blood-brain barrier disruption were induced by sequential intraspinal injections of ethidium bromide. In addition to the barrier disruption, there was toxic demyelination and exposure of myelin components to the immune system. Twenty-seven 3-month-old Wistar rats received 2, 3 or 4 injections of 1 µl of either 0.1% ethidium bromide in normal saline (19 rats) or 0.9% saline (8 rats) at different levels of the spinal cord. The time intervals between the injections ranged from 28 to 42 days. Ten days after the last injection, all rats were perfused with 2.5% glutaraldehyde. The spinal sections were evaluated macroscopically and by light and transmission electron microscopy. All the lesions demonstrated a mononuclear phagocytic infiltrate apparently removing myelin. Lymphocytes were not conspicuous and were found in only 34% of the lesions. No perivascular cuffings were detected. In older lesions (38 days and older) they were found only within Virchow-Robin spaces. This result suggests that multiple blood-brain barrier disruptions with demyelination and exposure of myelin components to the immune system were not sufficient to induce an immune-mediated reaction in the central nervous system.
Resumo:
We studied the effect of complete spinal cord transection (SCT) on gastric emptying (GE) and on gastrointestinal (GI) and intestinal transits of liquid in awake rats using the phenol red method. Male Wistar rats (N = 65) weighing 180-200 g were fasted for 24 h and complete SCT was performed between C7 and T1 vertebrae after a careful midline dorsal incision. GE and GI and intestinal transits were measured 15 min, 6 h or 24 h after recovery from anesthesia. A test meal (0.5 mg/ml phenol red in 5% glucose solution) was administered intragastrically (1.5 ml) and the animals were sacrificed by an iv thiopental overdose 10 min later to evaluate GE and GI transit. For intestinal transit measurements, 1 ml of the test meal was administered into the proximal duodenum through a cannula inserted into a gastric fistula. GE was inhibited (P<0.05) by 34.3, 23.4 and 22.7%, respectively, at 15 min, 6 h and 24 h after SCT. GI transit was inhibited (P<0.05) by 42.5, 19.8 and 18.4%, respectively, at 15 min, 6 h and 24 h after SCT. Intestinal transit was also inhibited (P<0.05) by 48.8, 47.2 and 40.1%, respectively, at 15 min, 6 h and 24 h after SCT. Mean arterial pressure was significantly decreased (P<0.05) by 48.5, 46.8 and 41.5%, respectively, at 15 min, 6 h and 24 h after SCT. In summary, our report describes a decreased GE and GI and intestinal transits in awake rats within the first 24 h after high SCT.
Resumo:
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.
Resumo:
The widespread consumption of anorectics and combined anorectic + alcohol misuse are problems in Brazil. In order to better understand the interactive effects of ethanol (EtOH) and diethylpropion (DEP) we examined the locomotion-activating effects of these drugs given alone or in combination in mice. We also determined whether this response was affected by dopamine (DA) or opioid receptor antagonists. A total of 160 male Swiss mice weighing approximately 30 g were divided into groups of 8 animals per group. The animals were treated daily for 7 consecutive days with combined EtOH + DEP (1.2 g/kg and 5.0 mg/kg, ip), EtOH (1.2 g/kg, ip), DEP (5.0 mg/kg, ip) or the control solution coadministered with the DA antagonist haloperidol (HAL, 0.075 mg/kg, ip), the opioid antagonist naloxone (NAL, 1.0 mg/kg, ip), or vehicle. On days 1, 7 and 10 after the injections, mice were assessed in activity cages at different times (15, 30, 45 and 60 min) for 5 min. The acute combination of EtOH plus DEP induced a significantly higher increase in locomotor activity (day 1: 369.5 ± 34.41) when compared to either drug alone (day 1: EtOH = 232.5 ± 23.79 and DEP = 276.0 ± 12.85) and to control solution (day 1: 153.12 ± 7.64). However, the repeated administration of EtOH (day 7: 314.63 ± 26.79 and day 10: 257.62 ± 29.91) or DEP (day 7: 309.5 ± 31.65 and day 10: 321.12 ± 39.24) alone or in combination (day 7: 459.75 ± 41.28 and day 10: 427.87 ± 33.0) failed to induce a progressive increase in the locomotor response. These data demonstrate greater locomotion-activating effects of the EtOH + DEP combination, probably involving DA and/or opioid receptor stimulation, since the daily pretreatment with HAL (day 1: EtOH + DEP = 395.62 ± 11.92 and EtOH + DEP + HAL = 371.5 ± 6.76; day 7: EtOH + DEP = 502.5 ± 42.27 and EtOH + DEP + HAL = 281.12 ± 16.08; day 10: EtOH + DEP = 445.75 ± 16.64 and EtOH + DEP + HAL = 376.75 ± 16.4) and NAL (day 1: EtOH + DEP = 553.62 ± 38.15 and EtOH + DEP + NAL = 445.12 ± 55.67; day 7: EtOH + DEP = 617.5 ± 38.89 and EtOH + DEP + NAL = 418.25 ± 61.18; day 10: EtOH + DEP = 541.37 ± 32.86 and EtOH + DEP + NAL = 427.12 ± 51.6) reduced the locomotor response induced by combined administration of EtOH + DEP. These findings also suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by the combination.
Resumo:
The objective of the present study was to identify neurons in the central nervous system that respond to spinal contusion injury in the rat by monitoring the expression of the nuclear protein encoded by the c-fos gene, an activity-dependent gene, in spinal cord and brainstem regions. Rats were anesthetized with urethane and the injury was produced by dropping a 5-g weight from 20.0 cm onto the exposed dura at the T10-L1 vertebral level (contusion group). The spinal cord was exposed but not lesioned in anesthetized control animals (laminectomy group); intact animals were also subjected to anesthesia (intact control). Behavioral alterations were analyzed by Tarlov/Bohlman scores, 2 h after the procedures and the animals were then perfused for immunocytochemistry. The patterns of Fos-like immunoreactivity (FLI) which were site-specific, reproducible and correlated with spinal laminae that respond predominantly to noxious stimulation or injury: laminae I-II (outer substantia gelatinosa) and X and the nucleus of the intermediolateral cell column. At the brain stem level FLI was detected in the reticular formation, area postrema and solitary tract nucleus of lesioned animals. No Fos staining was detected by immunocytochemistry in the intact control group. However, detection of FLI in the group submitted to anesthesia and surgical procedures, although less intense than in the lesion group, indicated that microtraumas may occur which are not detected by the Tarlov/Bohlman scores. There is both a local and remote effect of a distal contusion on the spinal cord of rats, implicating sensory neurons and centers related to autonomic control in the reaction to this kind of injury.
Resumo:
We sought to examine the possible participation of dopaminergic receptors in the phasic events that occur during rapid eye movement (REM) sleep, known as sawtooth waves (STW). These phasic phenomena of REM sleep exhibit a unique morphology and, although they represent a characteristic feature of REM sleep, little is known about the mechanisms which generate them and which are apparently different from rapid eye movements. STW behavior was studied in 10 male volunteers aged 20 to 35 years, who were submitted to polysomnographic monitoring (PSG). On the adaptation night they were submitted to the first PSG and on the second night, to the basal PSG. On the third night the volunteers received placebo or haloperidol and spent the whole night awake. On the fourth night they were submitted to the third PSG. After a 15-day rest period, the volunteers returned to the sleep laboratory and, according to a double-blind crossover randomized design, received haloperidol or placebo and spent the whole night awake, after which they were submitted to the fourth PSG. The volunteers who were given haloperidol combined with sleep deprivation exhibited an elevation of the duration and density of the STW, without significant alterations of the other REM sleep phasic phenomena such as rapid eye movement. These findings suggest that sawtooth waves must have their own generating mechanisms and that the dopaminergic receptors must exert a modulating role since REM sleep deprivation, as well as administration of neuroleptics, produces supersensitivity of dopaminergic receptors.
Resumo:
Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.
Resumo:
Short stature, a marker for undernutrition early in life, has been associated with obesity in Brazilian women, but not in men. We tested the hypothesis that weight gain during the reproductive years could explain this gender difference. A national two-stage household survey of mothers with one or more children under five years of age was conducted in Brazil in 1996. The subjects were women aged 20 to 45 years (N = 2297), with last delivery seven months or more prior to the interview. The regions of the country were divided into rural, North/Northeast (urban underdeveloped) and South/Southeast/Midwest (urban developed). The dependent variables were current body mass index (BMI) measured, BMI prior to childbearing (reported), and BMI change. Socioeconomic variables included mother's years of education and family purchasing power score. A secondary analysis was restricted to primiparous women. The prevalence of current overweight and overweight prior to childbearing (BMI > or = 25 kg/m²) was higher among shorter women (<1.50 m) compared to normal stature women only in the urban developed region (P < 0.05). After adjustment for socioeconomic variables, age, parity, BMI prior to childbearing, and age at first birth, current BMI was 2.39 units higher (P = 0.008) for short stature women living in the urban developed area compared with short stature women living in the urban underdeveloped area. For both multiparous and primiparous women, BMI gain compared to the value prior to childbearing was significantly higher among short stature women living in the urban developed region (P <= 0.04). These results provide clear evidence that short stature was associated with a higher BMI and with an increased risk of weight gain/retention with pregnancy in the developed areas of Brazil, but not in the underdeveloped ones.