73 resultados para Climate signal
Resumo:
The objective of this work was to evaluate the effects of high density planting on 'Tommy Atkins' mango trees cultivated in subhumid warm tropical climate in northeastern Brazil. Treatments consisted of five spacial arrangements of plants (8x5 m, 7x4 m, 6x3 m, 5x2 m and 4x2 m), which resulted in the following plant densities: 250 (control), 357, 555, 1,000 and 1,250 plants per hectare. Plant vegetative and reproductive variables, besides fruit quality parameters, were evaluated at seven and eight years after transplantation to the field. In general, high density planting caused reduction in vegetative and reproductive variables of individual mango trees, but had little influence on fruit quality. Above 555 plants per hectare, a significant decrease was observed in mango tree growth. Furthermore, there were decreases in the percentage of flowering, fruit yield per plant and per area. However, planting density up to 357 plants per hectare, in spite of decreasing plant growth and fruit yield per tree, increases fruit yield per area in 30% in comparison to the control.
Resumo:
The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.
Resumo:
The objective of this work was to evaluate the effect of the temperature increase forecasted by the Intergovernmental Panel on Climate Change (IPCC) on agricultural zoning of cotton production in Brazil. The Northeastern region showed the highest decrease in the low-risk area for cotton cultivation due to the projected temperature increase. This area in the Brazilian Northeast may decrease from 83 million ha in 2010 to approximately 71 million ha in 2040, which means 15% reduction in 30 years. Southeastern and Center-Western regions had small decrease in areas suitable for cotton production until 2040, while the Northern region showed no reduction in these areas. Temperature increase will not benefit cotton cultivation in Brazil because dimension of low-risk areas for economic cotton production may decrease.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
The objective of this work was to evaluate the efficiency of superficial application of limestone and slag, and their effects on soil chemical attributes and on yield and mineral nutrition of soybean, maize, and Congo signal grass (Urochloa ruziziensis). The experiment was carried out in a Rhodic Hapludox under no tillage system. The treatments consisted of the use of limestone or slag (silicates of calcium and magnesium) to correct soil acidity, and of a control treatment without the use of soil correctives. Rates were calculated in order to raise soil base saturation up to 70%. Soybean was sown in November 2006 and maize in December 2007. Congo signal grass was sown right after the harvests of soybean and maize, and it was cropped during the off-seasons. Soil chemical attributes were evaluated at 6, 12, and 18 months after the application of the corrective materials. Slag is an efficient source for soil acidity correction, being able to raise the exchangeable base levels in the soil profile faster than lime. Both limestone and slag increase dry matter yield of Congo signal grass, and grain yield of soybean and maize. Slag is more effective in improving maize grain yield.
Resumo:
The objective of this work was to analyze future scenarios for palisade grass yield subjected to climate change for the state of São Paulo, Brazil. An empirical crop model was used to estimate yields, according to growing degree-days adjusted by one drought attenuation factor. Climate data from 1963 to 2009 of 23 meteorological stations were used for current climate conditions. Downscaled outputs of two general circulation models were used to project future climate for the 2013-2040 and 2043-2070 periods, considering two contrasting scenarios of temperature and atmospheric CO2 concentration increase (high and low). Annual dry matter yield should be from 14 to 42% higher than the current one, depending on the evaluated scenario. Yield variation between seasons (seasonality) and years is expected to increase. The increase of dry matter accumulation will be higher in the rainy season than in the dry season, and this result is more evident for soils with low-water storage capacity. The results varied significantly between regions (<10% to >60%). Despite their higher climate potential, warmer regions will probably have a lower increase in future forage production.
Resumo:
The study evaluated the leaf nutritional levels of peach and nectarine trees under subtropical climate in order to improve the fertilization practices. The experiment was carried out in São Paulo state University, Botucatu, São Paulo State, Brazil. The experimental design consisted of subdivided plots, in which plots corresponded to cultivars and subplots to the leaf sample periods. The evaluated peach cultivars were: Marli, Turmalina, Precocinho, Jubileu, Cascata 968, Cascata 848, CP 951C, CP 9553CYN, and Tropic Beauty, and that of nectarine was 'Sun Blaze'. The sample periods were: after harvest, plants in vegetative period; dormancy; beginning of flowering and fruiting (standard sample). Results indicated significant variations in the levels of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn for the sampling period and in N, Ca, Mg, S, B, Fe and Mn levels for the cultivars.
Resumo:
The oriental fruit moth, Grapholita molesta Busck, and fruit flies, Anastrepha fraterculus L., are the important apple pests under Subtropical climate in Southern Brazil, and control is normally accomplished with insecticides. An alternative strategy for the control of G. molesta is mating disruption, through the use of pheromones. Mating disruption strategies using a low density of dispensers (20) per hectare were tested in comparison with conventional pesticides for control of G. molesta in commercial Gala apple orchards in Fraiburgo, SC, for a period of five years. The average field efficiency period of mating disruption formulation over five years was 113 days. In this period the mating interruption index on mating disruption plots was 84.8% over five years. Damage to Gala apples by oriental moth larvae was low (<0.1%) in mating disruption plots but did not differ from conventional plots, except in the third year. The use of mating disruption allowed for an average reduction of 5.2 insecticide treatments per year in Gala orchards during field efficiency period. It was necessary to apply 1.0 and 1.2 applications of insecticide to control of G. molesta and A. fraterculus, respectively. Mating disruption with a low density of diffusers proved to be an effective alternative to conventional methods for control of G. molesta in Gala apple orchards in subtropical climate in southern Brazil.
Resumo:
Objective:To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality.Materials and Methods:Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration.Results:As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions.Conclusion:Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.
Resumo:
Risk analysis of climate change on plant diseases has great importance for agriculture since it allows the evaluation of management strategies to minimize future damages. This work aimed to simulate future scenarios of coffee rust (Hemileia vastatrix) epidemics by elaborating geographic distribution maps using a model that estimates the pathogen incubation period and the output from three General Circulation Models (CSIRO-Mk3.0, INM-CM3.0, and MIROC3.2.medres). The climatological normal from 1961-1990 was compared with that of the decades 2020s, 2050s and 2080s using scenarios A2 and B1 from the IPCC. Maps were prepared with a spatial resolution of 0.5 × 0.5 degrees of latitude and longitude for ten producing states in Brazil. The climate variables used were maximum and minimum monthly temperatures. The maps obtained in scenario A2 showed a tendency towards a reduction in the incubation period when future scenarios are compared with the climatological normal from 1961-1990. A reduction in the period was also observed in scenario B1, although smaller than that in scenario A2.
Resumo:
The aim of this study was to evaluate the potential risk of moniliasis occurrence and the impacts of climate change on this disease in the coming decades, should this pathogen be introduced in Brazil. To this end, climate favorability maps were devised for the occurrence of moniliasis, both for the present and future time. The future scenarios (A2 and B2) focused on the decades of 2020, 2050 and 2080. These scenarios were obtained from six global climate models (GCMs) made available by the third assessment report of Intergovernmental Panel on Climate Change (IPCC). Currently, there are large areas with favorable climate conditions for moniliasis in Brazil, especially in regions at high risk of introduction of that pathogen. Considering the global warming scenarios provided by the IPCC, the potential risk of moniliasis occurrence in Brazil will be reduced. This decrease is predicted for both future scenarios, but will occur more sharply in scenario A2. However, there will still be areas with favorable climate conditions for the development of the disease, particularly in Brazil's main producing regions. Moreover, pathogen and host alike may undergo alterations due to climate change, which will affect the extent of their impacts on this pathosystem.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
Different climate models, modeling methods and carbon emission scenarios were used in this paper to evaluate the effects of future climate changes on geographical distribution of species of economic and cultural importance across the Cerrado biome. As the results of several studies have shown, there are still many uncertainties associated with these projections, although bioclimatic models are still widely used and effective method to evaluate the consequences for biodiversity of these climate changes. In this article, it was found that 90% of these uncertainties are related to methods of modeling, although, regardless of the uncertainties, the results revealed that the studied species will reduce about 78% of their geographic distribution in Cerrado. For an effective work on the conservation of these species, many studies still need to be carried out, although it is already possible to observe that climate change will have a strong influence on the pattern of distribution of these species.
Resumo:
ABSTRACT Climatic conditions stimulates the cambial activity of plants, and cause significant changes in trunk diameter growth and wood characteristics. The objective of this study was to evaluate the influence of climate variables in the diameter growth rate of the stem and the wood density of Eucalyptus grandis trees in different classes of the basal area. A total of 25 Eucalyptus trees at 22 months of age were selected according to the basal area distribution. Dendrometer bands were installed at the height of 1.30 meters (DBH) to monitor the diameter growth every 14 days, for 26 months. After measuring growth, the trees were felled and wood discs were removed at the DBH level to determine the radial density profile through x-ray microdensitometry and then re-scale the average values every 14 days. Climatic variables for the monitoring period were obtained and grouped every 14 days. The effect of the climate variables was determined by maximum and minimum growth periods in assessing trunk growth. These growth periods were related with precipitation, average temperature and relative air humidity. The re-scaled wood density values, calculated using the radial growth of the tree trunks measured accurately with steel dendrometers, enabled the determination of the relationship of small changes in wood density and the effect of the climatic variations and growth rate of eucalyptus tree trunks. A high sensitivity of the wood density to variation in precipitation levels was found.
Resumo:
Black meshes used in greenhouses provide shade to plants, affecting photosynthesis and presenting certain properties that change the microclimatic conditions in these environments. The objective of this study was to evaluate the variation in climate elements in greenhouse cultivated with gerbera (Gerbera jamesonii, Vr. Rambo) in relation to external conditions and the reference evapotranspiration (ETo) at Teresina, State of Piauí, Brazil. The measurements were obtained from July to October 2007 by an automatic data acquisition system installed inside and outside the greenhouse. The global solar radiation, evapotranspiration, precipitation, temperature, relative humidity, and wind speed were estimated. The results showed that major effect of the shading occurred on the mean air temperature during the 120 days, making it higher than the external environment. Inside the greenhouse, mean values of relative air humidity, reference evapotranspiração, global solar radiation and wind speed were lower compared to those outside the greenhouse.