84 resultados para CRYSTALLINE
Resumo:
This experiment, where very common materials and equipments are used, conducts to good and interesting results related to the ionic radii of sodium and chloride ions. It also offers an excellent opportunity to discuss the crystalline arrangement of solids and to apply simple mathematical tools for calculations. Other important concepts such as density, solubility and saturated solution are also used. The simplicity of the experiment creates an excellent opportunity for reasoning with the students about the technique.
Resumo:
A sample of hydroxyapatite was synthesized and its crystalline structure was analyzed by X-ray diffraction by means of the Rietveld method. Two functions were used to fit the peak profiles, modified Voigt (TCHZ) and Pearson VII. The occupational factors and lattice parameters obtained by both models show that the sample does not contain relevant cationic substitutions. The interatomic distances from Ca1 to oxygens O1, O2 and O3 were adequate for a pure hydroxyapatite without defect at site Ca1. Besides, the use of multiple lines in planes (300) and (002) associated with the model Pearson VII resulted in good agreement with the TCHZ model with respect to the size-strain effectswith an ellipsoidal shape of crystallites. In conclusion, the procedures adopted in the synthesis of hydroxyapatite produced a pure and crystalline material. The experimental results of transmission electron microscopy confirmed the predicted shape of crystals.
Resumo:
Chemical reactions in the solid state are often not included in undergraduate chemistry curricula, due to requirements for special laboratory facilities such as ovens and precision weighing balances. This work aims to describe novel and relatively simple magnetite chemical syntheses in dry medium, which could also be used as an alternative for freshmen chemistry experiments. The proposed reaction was carried out in a muffle furnace by heating (i) a sol-gel preparation and (ii) natural hematite, under nitrogen atmosphere at 400 ºC. The synthesized magnetite was characterized with powder X-ray diffraction and Mössbauer spectroscopy. Results show that magnetite samples have chemical properties as well as crystalline structure quite similar to those of standard natural magnetite.
Resumo:
The effect of microwave (MW) irradiation on the crystalline structure of two natural clays and one commercial clay, Montmorillonite K10, was analyzed comparing the X-ray diffraction, N2 isotherms, NMR-MAS of 27Al and 29Si spectra of the clays before and after MW irradiation. The preparation of dioxolane ketals of isatin was used to analyze the MW effect on the catalyst activation. The yields achieved using catalysts activated by MW irradiation were lower (2 to 5%) than the yields achieved using catalysts activated by heat in a conventional oven.
Resumo:
Samples of LDPE/modified starch blends 80/20 m/m before and after exposure to gamma rays were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The effect of gamma radiation is clearly seen in the samples irradiated at a dose of 25 kGy. The main alteration in the polymeric material after exposure at the radiation range was a decrease in the mechanical properties, alterations in the chemical structure of the blend with an increase in the carbonyl and vinyl indices and the appearance of new crystalline symmetry generating a crystalline domain not existing before in the blend.
Resumo:
Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.
Resumo:
2,4,6-trinitrotoluene (TNT) is an energetic material that shows scarce crystalline properties that can be improved by addition of 2,2',4,4',6,6'-hexanitrostilbene (HNS) in the crystallization process. HNS is a very important high explosive used in a variety of military, aerospace and industrial formulations owing to its suitable properties. It is an insensitive and thermal stable explosive that can be produced from 2,4,6-trinitrotoluene (TNT). The purpose of this work is the quantitative determination of HNS and TNT in explosives by thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR).
Resumo:
The pentaerythritol-tetranitrate (PETN) is a nitroether used in explosives and propellant formulations. Due to its suitable properties, PETN is used in booster manufacture. Knowing the thermal decomposition behavior of an energetic material is very important for storage and manipulation, and the purpose of this work is to study the kinetic parameters of the decomposition of PETN, compare the results with literature data and to study the decomposition activation energy differences between two crystalline forms of PETN (tetragonal and needle) by means of differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FT-IR) is used to study the two crystalline forms.
Resumo:
For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS) and water (S1) and with diisopropyl adipate, PFS and water (S4) presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC), the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.
Resumo:
Two samples of calcic bentonite of the Santa Elena Peninsula, Ecuador, were pillared with Al13 ions in the ratio of 10, 15 and 20 meq of Al g-1 of clay, calcinated at 573, 723 and 873 ºK and acid activated with 4, 6 and 8 mol L-1 H2SO4. Analyses by X-ray diffraction, X-ray fluorescence, differential and gravimetric thermal, density, surface area and porosity, were applied in order to study the modifications occurred in the crystalline structure of the montmorillonite. The 8 mol L-1 H2SO4 acid-activated 15 meq of Al g-1 of clay at 573 ºK Al-pillared samples indicated the best results in the bleaching of the soybean oil measured by UV-visible spectrophotometer.
Resumo:
The thermochromic behavior exhibited by vanadium(IV) alkoxides, [V2(μ-OPr i)2(OPr i) 6] and [V2(μ-ONep)2(ONep)6 ], OPr i = isopropoxide and ONep = neopentoxide, was studied by molecular modeling using DFT, TDDFT and INDO/S methods. The vibrational and electronic spectra calculated for [V2(μ-OPr i)2(OPr i) 6] were very similar to the experimental data registered for crystalline samples of the complex and for its solutions at low temperature (< 210 K), while spectra recorded at high temperature (> 315 K) were compatible with those calculated for the monomeric form, [V(OPr i)4]. These results consistently point to a monomer/dimer equilibrium as an explanation for the solution thermochromism of {V(OPr i)4}n. In spite of the structural similarity between [V2(μ-ONep)2(ONep)6 ] and [V2(μ-OPr i)2(OPr i) 6] in the solid state, the thermochromic behavior of the former could not be explained by the same model, and the possibility of tetranuclear aggregation at low temperatures was also investigated.
Resumo:
Samples of shells of oysters and mussels from sea farm around the Santa Catarina Island in south Brazil were collected and analyzed by DRX, FRX, SEM, CHN-S, FTIR, TG, AAS/Flame and AAS /GF. The results showed that the crystalline structure of mussel's shells is mainly formed by aragonite and the oyster's shells by calcite. The calcium percentage in both shells species was in the range of 33 to 35% and also 850 and 1200 mg/kg of strontium was detected in the shells of oysters and mussels, respectively. The content of organic matter was larger in the mussel's shells and the thermal degradation of both shells species occurred by three events at different temperatures from 250 to 830 ºC.
Resumo:
Solid solution of iron doped potassium strontium niobate with KSr2(FeNb4)O15-Δ stoichiometry was prepared by high efficiency ball milling method. Structural characterization was carried out by X-ray diffraction. Crystalline structure was analyzed by the Rietveld refinements using the FullProf software. The results showed a tetragonal system with the tetragonal tungsten bronze structure - TTB (a = 12.4631 (2) Å and c = 3.9322 (6) Å, V = 610.78 (2) ų). In this work, the sites occupancy by the K+, Sr2+ and Fe3+ cations on the TTB structure were determined. NbO6 polihedra distortion and its correlation with the theoretical polarization are discussed.
Resumo:
Chitinase is produced by a wide variety of plants as a defense against peste attacks. In this study, grape chitinases were purified 16 times by fractionation in 80% ammonium sulfate followed by dialysis and filtration. Purified chitinases exhibited enzymatic activity toward chitin azure. The yield of purified chitinase was 229 mg/L with chitinase activity of 563 U/g. Chitinases had molecular masses of 24 and 30 kDa, as evaluated by SDS-PAGE 12.5%. Two pH optima were determined 3.0 and 6.0. The optimal temperature was 42 °C. Pre hydrolysis of crystalline shrimp chitin by chitinases caused in an increase in the deacetylation ratio triggered by chitin deacetylase producing chitooligosaccharides with DA (degree acetylation) of 58.8%.
Resumo:
Axis of quinary symmetry occur in molecular symmetry, as in the case of fullerenes, and in crystalline symmetry, in the quasicrystals. Minerals with pentagonal faces do not have this element of symmetry, as the pyrite (FeS2) which shows a ridge that is different from the other ones, in any face of the crystal. The purpose of this paper is to demonstrate conceptual differences between pyritohedron and regular pentagonal dodecahedron symmetries, discussing students' difficulties to identify them. Also is proposed a didactic experiment with spatial models of the above-mentioned forms and the demonstration of its symmetries in clinographic projections.