48 resultados para CELLULOSE HYDROLYSIS
Resumo:
A multiplex polymerase chain reaction (PCR) assay was performed on 167 thermophilic campylobacters isolated from non-human primates. Samples were first identified by phenotypic methods resulting in 64 Campylobacter jejuni and 103 C. coli strains. Four strains identified biochemically as C. coli, were then determined to be C. jejuni by PCR. Comparison of methodologies showed that the main discrepancies were attributed to the hippurate hydrolysis test and sensitivity to cephalothin and nalidixic acid. Analysis of data showed that the application of phenotypic methods should be supplemented by a molecular method to offer a more reliable Campylobacter identification.
Resumo:
Insect cell cultures are an important biotechnological tool for basic and applied studies. The objective of this work was to establish and characterise a new cell line from Culex quinquefasciatus embryonic tissues. Embryonated eggs were taken as a source of tissue to make explants that were seeded in L-15, Grace's, Grace's/L-15, MM/VP12, Schneider's and DMEM culture media with a pH range from 6.7-6.9 and incubated at 28ºC. The morphological, cytogenetic, biochemical and molecular characteristics of the cell cultures were examined by observing the cell shapes, obtaining the karyotypes, using a cellulose-acetate electrophoretic system and performing random amplified polymorphic DNA-polymerase chain reaction analysis, respectively. The Grace's/L-15 medium provided the optimal nutritional conditions for cell adhesion and proliferation. Approximately 40-60 days following the explant procedure, a confluent monolayer was formed. Cellular morphology in the primary cultures and the subcultures was heterogeneous, but in the monolayer the epithelioid morphology type predominated. A karyotype with a diploid number of six chromosomes (2n = 6) was observed. Isoenzymatic and molecular patterns of the mosquito cell cultures matched those obtained from the immature and adult forms of the same species. Eighteen subcultures were generated. These cell cultures potentially constitute a useful tool for use in biomedical applications.
Resumo:
Trichomonas vaginalis is a parasite of the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ectonucleoside triphosphate diphosphohydrolase (NTPDase) family members, which hydrolyse extracellular ATP and ADP and ecto-5′-nucleotidase, which hydrolyses AMP, have been characterised in T. vaginalis. For trichomonad culture, the growth medium is supplemented with 10% serum, which is an important source of nutrients, such as adenosine. Here, we investigated the ATP metabolism of T. vaginalis trophozoites from long-term cultures and clinical isolates under limited bovine serum conditions (1% serum). The specific enzymatic activities were expressed as nmol inorganic phosphate (Pi) released/min/mg protein, the gene expression patterns were determined by reverse transcriptase-polymerase chain reaction, the extracellular adenine nucleotide hydrolysis was analysed by high performance liquid chromatography and the cell cycle analysis was assessed by flow cytometry. Serum limitation led to the profound activation of NTPDase and ecto-5'-nucleotidase activities. Furthermore, the levels of NTPDase A and B transcripts increased and extracellular ATP metabolism was activated, which led to enhanced ATP hydrolysis and the formation of ADP and AMP. Moreover, the cell cycle was arrested at the G0/G1 stage, which suggested adenosine uptake. Our data suggest that under conditions of serum limitation, NTPDase and ecto-5'-nucleotidase play a role in providing the adenosine required for T. vaginalis growth and that this process contributes to the establishment of parasitism.