52 resultados para CELL-PROLIFERATION
Resumo:
Twenty one cases of hepatoesplenic schistosomiasis patients without clinical and laboratory evidence of renal disease, were studied by surgical biopsies using light microscopy and immunofluorescence. The cases were classified histologically as: normal pattern (6 cases); minimal changes (6 cases); and mesangial proliferative glomerulonephritis (9 cases). By the immunofluorescence microscopy using anti IgM, IgG, IgA and C3, the predominant finding in all biopsies, except the normal cases, was granular deposits of IgM in the mesangium along with C3. On the other hand, IgG was present in all cases including normal biopsies along the capillary walls. However IgG was also present in the mesangium only in cases with glomerular lesions. This finding may well be similar to that recently described as IgM mesangial nephropathy. According to our cases a mesangial proliferative glomerulonephritis, characterized by segmental cell proliferation and deposition of IgM in the mesangium, is probably the entity found in the early stages of mansonic schistosomiasis.
Resumo:
Macromolecule synthesis of Trypanosoma cruzi in culture was monitored using radioactive tracers. Cells of different days in culture displayed a preferential incorporation of precursors as follows: 1 day for (³H)-thymidine cells; 3 days for (³H)-uridine cells, and 4 days for (³H)-leucine cells. Autoradiographic studies showed that (³H)-thymidine was incorporated in the DNA of both kinetoplast and nucleus in this order. Shifts in the intracellular content of cAMP either by addition of dibutyryl-cAMP or by stimulation of the adenylcyclase by isoproterenol, caused an inhibition in the synthesis of DNA, RNA and proteins. Addition to the T. cruzi cultures of these agents which elevate the intracellular content ofcAMP provoked an interruption of cell proliferation as a result of the impairment of macromolecule synthesis. A discrimination was observed among the stereoisomers of isoproterenol, the L configuration showing to be most active.
Resumo:
We have established an in vitro culture system for adult schistosomes that allows monitoring gene expression for up to more than ten days. Comparing female worms that are paired with those that have been separated, we find distinct differences, clearly documenting an influence of the male in female gene expression. In perfect coincidence with classical observations that were based on histological techniques, we find that the male particularly regulates gene expression in those tissues that are characterized by cell proliferation, e.g. the vitellaria. From these results, we hypothesize that the key target for the inductive signal that is transferred from the male to the female during pairing is the activation of a growth factor that stimulates mitotic proliferation.
Resumo:
Schistosomiasis is a disease whose pathology is strongly related to the granulomatous reaction formed around parasite eggs trapped in host tissues. Studies have shown that the chronic intestinal form (INT) of this infection is associated with a variety of immunoregulatory mechanisms which lead to a diminished granulomatous reaction. Using an in vitro model of granuloma reaction, we show that immune complexes (IC) isolated from sera of INT patients are able to reduce granulomatous reaction developed by peripheral blood mononuclear cells (PBMC) from acute (AC), INT and hepatosplenic (HE) patients to soluble egg antigen (SEA)-conjugated polyacrylamide beads (PB-SEA). This inhibitory activity is also observed in cell proliferation assay of PBMC from INT and HE patients stimulated with SEA and adult worm antigen (SWAP). Furthermore, IC isolated from sera of patients with different clinical forms of the disease are also able to suppress INT patients PBMC reactivity. Therefore, our results show that circulating IC present in sera of patients with different clinical forms of schistosomiasis may down-regulate PBMC reactivity to parasite antigens resulting in a diminished granuloma reaction to parasite eggs
Resumo:
Nitric oxide (NO) is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP), named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen) or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.
Resumo:
Paramyosin and Sm14 are two of the six antigens selected by the World Health Organization as candidates to compose a subunit vaccine against schistosomiasis. Both antigens are recognized by individuals naturally resistant to Schistosoma mansoni infection and induced protective immunity in the murine model. Three Sm14 epitopes and eleven paramyosin epitopes were selected by their ability to bind to different HLA-DR molecules using the TEPITOPE computer program, and these peptides were synthetically produced. The cellular recognition of Sm14 and paramyosin epitopes by peripheral blood mononuclear cells of individuals living in endemic area for schistosomiasis was tested by T cell proliferation assay. Among all Sm14 and paramyosin epitopes studied, Sm14-3 was preferentially recognized by individuals naturally resistant to S. mansoni infection while Para-5 was preferentially recognized by individuals resistant to reinfection. These two peptides represent promising antigens to be used in an experimental vaccine against schistosomiasis, since their preferential recognition by resistant individuals suggest their involvement in the induction of protective immunity.
Resumo:
The intestinal epithelium plays a crucial role in providing a barrier between the external environment and the internal milieu of the body. A compromised mucosal barrier is characteristic of mucosal inflammation and is a key determinant of the development of intestinal diseases such as Crohn's disease and ulcerative colitis. The intestinal epithelium is regularly exposed to serine proteinases and this exposure is enhanced in numerous disease states. Thus, it is important to understand how proteinase-activated receptors (PARs), which are activated by serine proteinases, can affect intestinal epithelial function. This review surveys the data which demonstrate the wide distribution of PARs, particularly PAR-1 and PAR-2, in the gastrointestinal tract and accessory organs, focusing on the epithelium and those cells which communicate with the epithelium to affect its function. PARs have a role in regulating secretion by epithelia of the salivary glands, stomach, pancreas and intestine. In addition, PARs located on subepithelial nerves, fibroblasts and mast cells have important implications for epithelial function. Recent data outline the importance of the cellular site of PAR expression, as PARs expressed on epithelia may have effects that are countered by PARs expressed on other cell types. Finally, PARs and their ability to promote epithelial cell proliferation are discussed in terms of colon cancer.