50 resultados para CASP8 and FADD-Like Apoptosis Regulating Protein
Resumo:
Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.
Resumo:
The common bean (Phaseolus vulgaris L.) is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3). The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco), treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition). The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour). The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above) was used. The concentration of total protein (g.100 g-1 of dry matter) in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter). The in vitro protein digestibility of enzymatically untreated bean flour (control) ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p < 0.05) after the enzyme treatment. The greatest change was observed in the OPNS cultivar treated with protease from Bacillus sp., which increased its digestibility from 54.4% (control treatment) to 81.6%.
Effect of wheat flour protein variations on sensory attributes, texture and staling of Taftoon bread
Resumo:
The quality of flat breads depends in part on the textural properties of breads during storage. These properties are largely affected by flour protein quality and quantity. The present study aimed to examine differences between sensory properties, textural and staling of Tandoori breads made from flours of different quality and different quantities of protein. This was implemented by using three flours with 9.4, 11.5 and 13.5% protein contents and different protein qualities shown by Zeleney sedimentation volume 16.25, 22.75 and 23.25 mL respectively. Bread strips were submitted to uniaxial compression between two parallel plates on an Instron Universal Testing machine, and firmness of the breads was determined. Results indicated the differences in the sensory attributes of breads produced by flours of different protein content and quality, demonstrating that high protein high quality flours are not able to sheet and expand under the high temperature - short time conditions employed in Taftoon bread production and are therefore not suitable for this kind of bread. Results showed that flour with 11.5% protein content, produced bread with better sensory characteristics and acceptable storage time.
Resumo:
Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v) starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein) and 36 hours (325 U.mg-1 Protein), respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v) and corn steep liquor (0.3%, w/v) not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and protease production reached a maximum in 18 hours with levels of 401 U.mg-1 protein and 78 U.mg-1 protein, respectively. The compatibility of the enzymes produced with commercial laundry detergent was investigated. In the presence of Campeiro® detergent, α-amylase activity increased while protease activity decreased by about 27%. These enzymes improved the cleaning power of Campeiro® detergent since they were able to remove egg yolk and tomato sauce stains when used in this detergent.
Resumo:
This study evaluated the physicochemical properties and protein and mineral content of honey samples from Ceará State, Northeastern Brazil, one of the major honey exporters in the country. Nutritional importance of the minerals detected was also analyzed. Physicochemical properties were examined according to the AOAC and CAC official methods; the protein content was determined using the Bradford method, and the minerals were analyzed by atomic absorption spectrometry. All analyses were performed in triplicate. The levels of macrominerals sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) varied from 1.80-47.20, 21.30-1513.30, 14.58-304.82, and 2.48-28.33 mg/kg, respectively, and the trace elements iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), and chromium (Cr) varied from 0.12-8.76, 0.07-1.29, 0.06-1.96, 0.07-1.85 mg/kg, 0.36 × 10-3-62.00 × 10-3 and 22.50 × 10-3-170.33 × 10-3 µg/kg, respectively. Myracrodruon urundeuva honey sample had high contents of macrominerals (Na, K, Ca, and Mg). Protein content of the Anacardium occidentale honey sample was the highest (1121.00 µg/g) among the samples analyzed. Among the minerals detected in the honey samples, K showed the highest concentration, followed by Ca, Na, and Mg. The presence of trace elements can show environmental contamination. The honey samples studied were free of trace elements contamination, except for Mn; the Piptadenia moniliformis was the only honey sample that was in compliance with the law requirements. The variations of the chemical constituents in the honey samples are probably related to differences in the floral origin and mineral and protein contents and confirm the nutritional importance of Ceará State honey.