131 resultados para Bacterial vaccines
Resumo:
South American Aoutus an d Saimiri monkeys, which are susceptible to infection with human malarias, have been used to develop models for the testing of huma malaria vaccines. Studies indicate that blood-stage and sporozoite vaccines can be tested in these monkeys using appropriate strains of parasites.
Resumo:
Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.
Resumo:
The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.
Resumo:
Bacteria active against dipteran larvae (mosquitoes and black flies) include a wide variety of Bacillus thuringiensis and B. sphaericus strains, as well as isolates of Brevibacillus laterosporus and Clostridium bifermentans. All display different spectra and levels of activity correlated with the nature of the toxins, mainly produced during the sporulation process. This paper describes the structure and mode of action of the main mosquitocidal toxins, in relationship with their potential use in mosquito and/or black fly larvae control. Investigations with laboratory and field colonies of mosquitoes that have become highly resistant to the B. sphaericus Bin toxin have shown that several mechanisms of resistance are involved, some affecting the toxin/receptor binding step, others unknown.
Resumo:
Bacillus spp. based larvides are increasingly replacing, with numerous advantages, chemical insecticides in programmes for controlling black fly and mosquito populations. Brazil was among the pioneers in adopting Bacillus thuringiensis israelensis (B.t.i) to control black flies. However, the major current mosquito control programme in Brazil, the Programme for Eradication of Aedes aegypti launched in 1997, only recently decided to replace temephos by B.t.i based larvicides, in the State of Rio de Janeiro. In the last decade, works developed by research groups in Brazilian institutions have generated a significant contribution to this subject through the isolation of B. sphaericus new strains, the development of new products and the implementation of field trials of Bacillus efficacy against mosquito species under different environmental conditions.
Resumo:
The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.
Resumo:
Oviposition attractants could be used for monitoring as well as controlling mosquitoes by attracting them to lay eggs at chosen sites. In the present study, culture filtrates of seven bacterial species were tested for their attractancy against gravid females of Culex quinquefasciatus. When their oviposition active indices (OAI) were studied, the culture filtrates of Bacillus cereus and Pseudomonas fluorescens exhibited oviposition attractancy (OAI = >0.3) at 100 ppm and the OAI were respectively 0.70 and 0.47. Culture filtrates of B. thuringiensis var. israelensis (wild type), B. t. var. israelensis (mutant) and B. sphaericus showed attractancy at 2000 ppm with OAI of respectively 0.71, 0.59 and 0.68. However, the OAI of B. megaterium as well as Azospirillum brasilense was 0.13 (at 2000 ppm), which was less than 0.3 required to be considered them as attractants. When the oviposition attractancy of the bacterial culture filtrates were compared with that of a known oviposition attractant, p-cresol (at 10 ppm), the culture filtrates of B. t. var. israelensis (wild type) and B. cereus were found to be more active than p-cresol, respectively with 64.2 and 54.3% oviposition.
Resumo:
Samples from 20 lots of diphtheria-tetanus (adult use dT) vaccine and from 20 lots of diphtheria-tetanus-pertussis (DTP) vaccine were used to standardize and validate the in vitro toxin binding inhibition (ToBI) test for the immunogenicity test of the tetanus component. The levels of tetanus antitoxin obtained by ToBI test were compared to those obtained using the toxin neutralization (TN) test in mice routinely employed to perform the quality control of the tetanus component in adsorbed vaccines. The results ranged from 1.8 to 3.5 IU/ml for dT and 2 to 4 IU/ml for DTP by ToBI test and 1.4 to 3 IU/ml for dT and 1.8 to 3.5 IU/ml for DTP by TN in mice. These results were significantly correlated. From this study, it is concluded that the ToBI test is an alternative to the in vivo neutralization procedure in the immunogenicity test of the tetanus component in adsorbed vaccines. A substantial refinement and a reduction in use of animals can be achieved.
Resumo:
We have compared the efficacy of two Leishmania (Leishmania) major vaccines, one genetically attenuated (DHFR-TS deficient organisms), the other inactivated [autoclaved promastigotes (ALM) with bacillus Calmete-Guérin (BCG)], in protecting rhesus macaques (Macaca mulatta) against infection with virulent L. (L.) major. Positive antigen-specific recall proliferative response was observed in vaccinees (79% in attenuated parasite-vaccinated monkeys, versus 75% in ALM-plus-BCG-vaccinated animals), although none of these animals exhibited either augmented in vitro gamma interferon (IFN-g) production or positive delayed-type hypersensitivity (DTH) response to the leishmanin skin test prior to the challenge. Following challenge, there were significant differences in blastogenic responses (p < 0.05) between attenuated-vaccinated monkeys and naïve controls. In both vaccinated groups very low levels of antibody were found before challenge, which increased after infective challenge. Protective immunity did not follow vaccination, in that monkeys exhibited skin lesion at the site of challenge in all the groups. The most striking result was the lack of pathogenicity of the attenuated parasite, which persisted in infected animals for up to three months, but were incapable of causing disease under the conditions employed. We concluded that both vaccine protocols used in this study are safe in primates, but require further improvement for vaccine application.
Resumo:
We have previously confirmed the presence of common antigens between Schistosoma mansoni and its vector, Biomphalaria glabrata. Cross-reactive antigens may be important as possible candidates for vaccine and diagnosis of schistosomiasis. Sera from outbred mice immunized with a soluble Biomphalaria glabrata antigen (SBgA) of non-infected B. glabrata snails recognized molecules of SBgA itself and S. mansoni AWA by Western blot. Recognition of several molecules of the SBgA were inhibited by pre-incubation with AWA (16, 30, 36, 60 and 155 kDa). The only specific molecule of AWA, inhibited by SBgA, was a 120 kDa protein. In order to determine which epitopes of SBgA were glycoproteins, the antigen was treated with sodium metaperiodate and compared with non-treated antigen. Molecules of 140, 60 and 24 kDa in the SBgA appear to be glycoproteins. Possible protective effects of the SBgA were evaluated immunizing outbred mice in two different experiments using Freund's Adjuvant. In the first one (12 mice/group), we obtained a significant level of protection (46%) in the total worm load, with a high variability in worm recovery. In the second experiment (22 mice/group), no significant protection was observed, neither in worm load nor in egg production per female. Our results suggest that SBgA constitutes a rich source of candidate antigens for diagnosis and prophylactic studies.
Resumo:
We evaluated the usefulness of the combination of three plasmids encoding tegumental (pECL and pSM14) and muscular (pIRV5) antigens of the Schistosoma mansoni on improving the protective immunity over the use of a single antigen as DNA vaccines. Female BALB/c mice were inoculated twice with 25 µg DNA plasmid within two weeks interval. The challenge was performed with 80 cercarias of a regional isolate of S. mansoni (SLM) one week after the last immunization. Six weeks after challenge, all mice were perfused for worm load determination. The following groups were analyzed: saline; empty vector; monovalent formulations of pECL; pSM14 and pIRV5 and also double combinations of pECL/pIRV5 and pIRV5/pSM14 and a triple combination of pECL/pIRV5/pSM14. The protection was expressed as a percentage of worm loads in each group compared with the saline group. The results obtained were 41% (p < 0.05); 52% (p < 0.05); 51% (p < 0.05); 48% (p < 0.05); 55% (p < 0.05); 45% (p < 0.05); 65% (p < 0.05) for each group respectively.
Resumo:
The immunogenicity and safety of a new recombinant hepatitis B vaccine from the Instituto Butantan (Butang®) were evaluated in a multicenter, double-blind, prospective equivalence study in three centers in Brazil. Engerix B® was the standard vaccine. A total of 3937 subjects were recruited and 2754 (70%) met all protocol criteria at the end of the study. All the subjects were considered healthy and denied having received hepatitis B vaccine before the study. Study subjects who adhered to the protocol were newborn infants (566), children 1 to 10 years old (484), adolescents from 11 to 19 years (740), adults from 20 to 30 years (568), and adults from 31 to 40 years (396). Vaccine was administered in three doses on the schedule 0, 1, and 6 months (newborn infants, adolescents, and adults) or 0, 1, and 7 months (children). Vaccine dose was intramuscular 10 µg (infants, children, and adolescents) or 20 µg (adults). Percent seroprotection (assumed when anti-HBs titers were > 10mIU/ml) and geometric mean titer (mIU/ml) were: newborn infants, 93.7% and 351.1 (Butang®) and 97.5% and 1530.6 (Engerix B®); children, 100% and 3600.0 (Butang®) and 97.7% and 2753.1 (Engerix B®); adolescents, 95.1% and 746.3 (Butang®) and 96% and 1284.3 (Engerix B®); adults 20-30 years old, 91.8% and 453.5 (Butang®) and 95.5% and 1369.0 (Engerix B®); and adults 31-40 years old, 79.8% and 122.7 (Butang®) and 92.4% and 686.2 (Engerix B®). There were no severe adverse events following either vaccine. The study concluded that Butang® was equivalent to Engerix B® in children, and less immunogenic but acceptable for use in newborn infants, adolescents, and young adults.