103 resultados para Atomic weight
Resumo:
The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.
Resumo:
In the proposed method, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, such as extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, linearity was maintained between 1.0 ng mL-1 to 1.5 mg mL-1 for zinc and 1.0 ng mL-1 to 0.4 mg mL-1 for cadmium. The proposed method has been applied for determination of trace amount of zinc and cadmium in standard and water samples with satisfactory results.
Resumo:
A simultaneous solid phase extraction procedure for enrichment of Cu(II), Cd(II) and Mn(II) has been developed. The method is based on adsorption of Cu(II), Cd(II) and Mn(II) ions on polyethylene glycol-silica gel pre-conditioned with acetate buffer (pH 5.5). The adsorbed metal ions are eluted with nitric acid (1 mol L -1) and determined by flame atomic absorption spectrometry. The calibration graph was linear in the range of 2-140 ng mL-1 for Cu(II), 1-40 ng mL-1 for Cd(II) and 4-100 ng mL-1 for Mn(II). The limits of detection were 0.66, 0.33 and 1.20 ng mL-1 for Cu(II), Cd(II) and Mn(II), respectively.
Resumo:
A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.
Resumo:
A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl) dimethane (TTDM) in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.
Resumo:
The equilibrium geometries of α,α-ditert-butyl-4H-cyclopenta[2,1-b,3;4-b']dithiophene (DBDT) and α,α-ditert-butyl-4H-cyclopenta[2,1-b,3;4-b']dithiophene S-oxide (DBDTO) were studied at the DFT level of theory with a standard 6-311G* basis set. The molecular structures of the DBDT series were more planar than the corresponding DBDTO series, as revealed by dihedral angles. The UV-visible absorption calculated at TD-DFT/6-311G* showed two absorption peaks for all the molecules except C=S and C=O bridged molecules. In DBDTOs, C=S and C=O bridged molecules showed three and four absorption peaks, respectively. The DBDTOs had lower band gaps and longer wavelengths compared to the corresponding DBDTs.
Resumo:
In this study, a procedure is developed for cloud point extraction of Pd(II) and Rh(III) ions in aqueous solution using Span 80 (non-ionic surfactant) prior to their determination by flame atomic absorption spectroscopy. This method is based on the extraction of Pd(II) and Rh(III) ions at a pH of 10 using Span 80 with no chelating agent. We investigated the effect of various parameters on the recovery of the analyte ions, including pH, equilibration temperature and time, concentration of Span 80, and ionic strength. Under the best experimental conditions, the limits of detection based on 3Sb for Pd(II) and Rh(III) ions were 1.3 and 1.2 ng mL-1, respectively. Seven replicate determinations of a mixture of 0.5 µg mL-1 palladium and rhodium ions gave a mean absorbance of 0.058 and 0.053 with relative standard deviations of 1.8 and 1.6%, respectively. The developed method was successfully applied to the extraction and determination of the palladium and rhodium ions in road dust and standard samples and satisfactory results were obtained.
Resumo:
A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS) determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1). The preconcentration factor is 100 for (200 mL) solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.
Resumo:
A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) followed by graphite furnace atomic absorption spectrometry (GFAAS). Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.
Resumo:
Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma optical emission spectrometry (ICP OES) are widely used in academic institutions and laboratories for quality control to analyze inorganic elements in samples. However, these techniques have been observed to underperform in sample nebulization processes. Most of the samples processed through nebulization system are discarded, producing large volumes of waste. This study reports the treatment and reuse of the waste produced from ICP OES technique in a laboratory of analytical research at the Universidade Federal do Ceará, Brazil. The treatment of the waste was performed by the precipitation of elements using (NH4)2CO3. Subsequently, the supernatant solution can be discarded in accordance with CONAMA 430/2011. The precipitate produced from the treatment of residues can be reused as a potential sample in undergraduate qualitative analytical chemistry lab classes, providing students the opportunity to test a real sample.
Resumo:
A sorption concentration method using impregnated silica has been developed to determine small concentration of lead in water by Atomic Absorption Spectrometry.
Resumo:
A flow-injection system with sample and reagent addition by the synchronous merging zones approach for calcium determination in milk by flame AAS is proposed. Main parameters were optimized using a factorial design with central point. The optimum conditions were 2.5% (m/v) for La concentration, 8 mL min-1 for the carrier flow-rate, 20 cm for coiled reactor and 250 ìL for sample volume. Different sample preparation procedures were evaluated such as dilution in water or acid and microwave-assisted decomposition using concentrated or diluted acids. The optimized flow system was applied to determine Ca in eleven commercial milk samples and two standard reference materials diluted in water. Similar calcium levels were encountered comparing the results obtained by the proposed method (dilution in water) with those obtained using microwave-oven digestion. Results obtained in two standard reference materials were in agreement at 95% confidence level with those certified. Recoveries of spiked samples were in the 93% - 116% range. Relative standard deviation (n = 12) was < 5.4% and the sample throughput was 150 measurements per hour, corresponding to a consumption of 250 µL of sample and 6.25 mg La per determination.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal217.0005 nm = A Pb217.0005 nm + A PO217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (A PO) to the total absorbance (Atotal) at 217.0005 nm: A Pb217.0005 nm = Atotal217.0005 nm - A PO217.0005 nm = Atotal217.0005 nm - k (A PO217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 - 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained. Calibration curves for P at 217.0005 and 217.0458 nm with linearity better than 0.998 were obtained. Relative standard deviations (RSD) of measurements (n = 12) in the range of 1.4 - 4.3% and 2.0 - 6.0% without and with mathematical equation correction approach were obtained respectively. The limit of detection calculated to analytical line at 217.0005 nm was 10 µg L-1 Pb. Recoveries for Pb spikes were in the 97.5 - 100% and 105 - 230% intervals with and without mathematical equation correction approach, respectively.
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324.754 nm, 327.396 nm, 222.570 nm, 249.215 nm and 224.426 nm were evaluated and main figures of merit established. Absorbance measurements at 324.754 nm, 249.215 nm and 224.426 nm allows the determination of Cu in the 0.07 - 5.0 mg L-1, 5.0 - 100 mg L-1 and 100 - 800 mg L-1 concentration intervals respectively with linear correlation coefficients better than 0.998. Limits of detection were 21 µg L-1, 310 µg L-1 and 1400 µg L-1 for 324.754 nm, 249.215 nm and 224.426 nm, respectively and relative standard deviations (n = 12) were £ 2.7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.