72 resultados para Aqueous Mixtures
Resumo:
The application of multivariate calibration techniques to multicomponent analysis by UV-VIS molecular absorption spectrometry is a powerful tool for simultaneous determination of several chemical species. However, when this methodology is accomplished manually, it is slow and laborious, consumes high amounts of reagents and samples, is susceptible to contaminations and presents a high operational cost. To overcome these drawbacks, a flow-batch analyser is proposed in this work. This analyser was developed for automatic preparation of standard calibration and test (or validation) mixtures. It was applied to the simultaneous determination of Cu2+, Mn2+ and Zn2+ in polyvitaminic and polymineral pharmaceutical formulations, using 4-(2-piridilazo) resorcinol as reagent and a UV-VIS spectrophotometer with a photodiode array detector. The results obtained with the proposed system are in good agreement with those obtained by flame atomic absorption spectrometry, which was employed as reference method. With the proposed analyser, the preparation of calibration and test mixtures can be accomplished about four hours, while the manual procedure requires at least two days. Moreover, it consumes smaller amounts of reagents and samples than the manual procedure. After the preparation of calibration and test mixtures, 60 samples h-1 can be carried out with the proposed flow-batch analyser.
Resumo:
Four simple titrimetric procedures are described for the determination of lisinopril (LNP) in bulk and in pharmaceuticals based on the neutralization of basic-amino and acidic carboxylic acid groups present in LNP. Method A is based on the neutralization of basic amino groups using perchloric acid as titrant in anhydrous acetic acid medium. Method B, method C and method D are based on neutralization of carboxylic acid group using NaOH, sodium methoxide and methanolic KOH, as titrants, respectively. Method A is applicable over 2.0-20.0 mg range and the calculations are based in the molar ratio of 1:2 (LNP:HClO4). Method B, method C and method D are applicable over 2.0-20.0 mg, 1.0-10.0 mg and 5.0-15.0 mg range, respectively, and their respective molar ratios are 1:1 (LNP:NaOH), 1:2 (LNP:CH3ONa) and 1:1 (LNP:KOH). Intraday and inter day accuracy and precision of the methods were evaluated and the results showed intra- and inter-day precision less than 2.7% (RSD), and accuracy of < 2.5 % (RE). The developed methods were applied to determine LNP in tablets and the results were validated statistically by comparing the results with those of the reference method by applying the Student's t-test and F-test. The accuracy was further ascertained by recovery studies via standard addition technique. No interferences from common tablet exipients was observed.
Resumo:
Colloid chemical behavior of indole dihydropyrimidines in non-aqueous solvent mixture benzene-methanol of varying composition has been investigated by viscometric measurements at 303K± 0.1. The viscosity of the system increases with the increase in concentration. The Trend Change Point (TCP) values have been determined by intersection of two straight lines, which are found to be dependent on the composition of solvent mixtures. The study confirms that the nature of synthesized compounds agglomerate formed below and above 50% benzene concentration is quite different. The viscometric data have been analyzed in terms of Einstein, Vand, Moulik and Jones-Dole equations. These well known equations have been successfully applied to explain the results of viscosity measurements and the viscometric parameters show that the behavior of compound changes in the proximity of 50% benzene concentration.
Resumo:
The combination of two low-cost classical procedures based on titrimetric techniques is presented for the determination of pyridoxine hydrochloride in pharmaceuticals samples. Initially some experiments were carried out aiming to determine both pKa1 and pKa2 values, being those compared to values of literature and theoretical procedures. Commercial samples containing pyridoxine hydrochloride were electrochemically analysed by exploiting their acid-base and precipitation reactions. Potentiometric titrations accomplished the reaction between the ionizable hydrogens present in pyridoxine hydrochloride, being NaOH used as titrant; while the conductimetric method was based on the chemical precipitation between the chloride of pyridoxine hydrochloride molecule and Ag+ ions from de silver nitrate, changing the conductivity of the solution. Both methods were applied to the same commercial samples leading to concordant results when compared by statistical tests (95 and 98% confidence levels). Recoveries ranging from 99.0 to 108.1% were observed, showing no significant interference on the results.
Resumo:
The aim of this study was to evaluate the antimicrobial activity of aqueous extracts from fruiting bodies of different isolates of Lentinula edodeson the pathogens Colletotrichum sublineolum, the causal agent of anthracnose in sorghum, and Xanthomonas axonopodispv. passiflorae, the causal agent of bacterial spot in passion fruit. Results showed that the aqueous extracts from isolates LE JAB-K and LE 95/01 significantly reduced C. sublineolumspore germination,while the isolate LE 96/22 was the only one to inhibit the pathogen mycelial growth. However, all L. edodesisolates showed inhibitory effect on C. sublineolumappressorium formation. Regarding X. axonopodispv. passiflorae, the aqueous extracts from all L. edodesisolates significantly reduced the in vitromultiplication of the bacterium. However, antimicrobial activity was lost when the extracts were autoclaved, demonstrating their thermolabile property. The aqueous extract from isolate LE 96/22 was also partially purified by anion exchange chromatography and fraction V exhibited high inhibitory activity on the in vitromycelial growth of C. sublineolum, while the multiplication of X. axonopodispv. passifloraewas inhibited by fractions IV, V and VII. Thus, L. edodesisolates were shown to produce compounds exhibiting antifungal and antibacterial activities against phytopathogens, which are mainly concentrated in fraction V.
Resumo:
The present study sought to observe the behavior of soils in natural state and in mixtures, in different ratios, with the industrial solid residue called whitewash mud. The work was conducted with samples of typical soils from the region of Alagoinhas, Bahia-Brazil. Wet chemical analysis and atomic absorption spectrophotometry were used in order to obtain the classification of the industrial solid residue. Solubilization and leaching tests were performed and X-ray diffraction and electron microscopy techniques were carried out. The results showed that the whitewash mud was classified as non-inert, but with great capacity of heavy metal retention largely owed to the kaolinite and goethite presence in the clay fraction of the soils, making it difficult to have heavy metals readily available for exchange.
Resumo:
Tank mixtures among herbicides of different action mechanisms might increase weed control spectrum and may be an important strategy for preventing the development of resistance in RR soybean. However, little is known about the effects of these herbicide combinations on soybean plants. Hence, two experiments were carried out aiming at evaluating the selectivity of glyphosate mixtures with other active ingredients applied in postemergence to RR soybean. The first application was carried out at V1 to V2 soybean stage and the second at V3 to V4 (15 days after the first one). For experiment I, treatments (rates in g ha-1) evaluated were composed by two sequential applications: the first one with glyphosate (720) in tank mixtures with cloransulam (30.24), fomesafen (125), lactofen (72), chlorimuron (12.5), flumiclorac (30), bentazon (480) and imazethapyr (80); the second application consisted of isolated glyphosate (480). In experiment II, treatments also consisted of two sequential applications, but tank mixtures as described above were applied as the second application. The first one in this experiment consisted of isolated glyphosate (720). For both experiments, sequential applications of glyphosate alone at 720/480, 960/480, 1200/480 and 960/720 (Expt. I) or 720/480, 720/720, 720/960 and 720/1200 (Expt. II) were used as control treatments. Applications of glyphosate tank mixtures with other herbicides are more selective to RR soybean when applied at younger stages whereas applications at later stages might cause yield losses, especially when glyphosate is mixed with lactofen and bentazon.
Resumo:
An active ingredients mixture of different action mechanisms is an essential tool to prevent or manage areas with resistant weeds. However, it is important that such a mixture provides adequate selectivity to the crop. The aim of this work was to evaluate glyphosate selectivity to glyphosate-resistant (RR) soybean, and also verify if there is selectivity in mixtures with other active ingredients applied postemergence aimed at new control strategies, which might be used in RR soybean cultivation. The herbicides and respective rates (g ha-1) evaluated were: glyphosate (720, 960, 1,200, and 1,440), and the mixtures of glyphosate (960) with cloransulam-methyl (30.24), fomesafen (125), lactofen (72), chlorimuron-ethyl (12.5), flumiclorac-pentyl (30), bentazon (480), or imazethapyr (80). All treatments were applied in postemergence when the soybean crop was at V2 to V3 stage. Treatments with glyphosate or in mixtures with postemergent herbicides showed visual effects of phytotoxicity when applied to the glyphosate-resistant soybean. Effects such as reduction in plant height, crop closure, number of pods per plant, and hundred grain weight could be observed. However, the effects related to plant development were mostly transient and did not persist during the crop cycle. Among the studied treatments, only the mixture of glyphosate and lactofen was not selective to the crop, promoting negative effects on most characteristics analyzed and consequently reducing grain yield.
Resumo:
The potential of three macrophytes, Azolla caroliniana, Salvinia minima, and Lemna gibba was assessed in this study to select plants for use in environmental remediation contaminated with atrazine. Experiments were carried out in a greenhouse over six days in pots containing Hoagland 0.25 strength nutritive solution at the following atrazine concentrations: 0; 0.01; 0.1; 1.0; 10.0 mg L-1. Decrease in biomass accumulation was observed in the three macrophytes, as well as toxic effects evidenced by the symptomatology developed by the plants which caused their deaths. The chlorosis and necrosis allowed to observe in the plants the high sensitivity of the three species to the herbicide. Plants presented low potential for removal of atrazine in solution when exposed to low concentrations of the herbicide. However, at the 10.0 mg L-1 atrazine concentration, L. gibba and A. caroliniana showed potential to remove the herbicide from the solution (0.016 and 0.018 mg atrazine per fresh mass gram, respectively). This fact likely resulted from the processes of atrazine adsorption by the dead material. The percentage of atrazine removed from the solution by the plants decreased when the plants were exposed to high concentrations of the pollutant. Azolla caroliniana, S. minima, and L. gibba were not effective in removing the herbicide from solution. The use of these species to remedy aquatic environments was shown to be limited.
Resumo:
The toxic action of aqueous wheat (Triticum aestivum) straw extracts was investigated on germination, early seedling growth, some biochemical attributes and the antioxidant enzymes of horse purslane (Trianthemaportulacastrum). Aqueous extracts of wheat straw were prepared by soaking the wheat straw in distilled water in 1:10 w/v ratio and diluted to obtain the concentrations of 0, 25, 50, 75 and 100%. These were used as pre and post emergence in laboratory and screen house trials. Wheat aqueous extracts exhibited phytotoxicity to horse purslane by inhibiting and delaying its germination and suppressing seedling growth. Wheat phytotoxins in its aqueous extracts suppressed the chlorophyll content and soluble protein, and enhanced soluble phenolics and the activity of antioxidant enzymes as catalase, peroxidase and superoxide dismutase in the seedlings of horse purslane compared with the control. Such inhibitory activity is believed to originate from exposure to wheat phytotoxins that are present in its aqueous straw extract. The suppressive effects of wheat straw need to be investigated further under field conditions.
Resumo:
The potential of three aquatic macrophytes, Azoll caroliniana, Salvinia minima and Lemna gibba, was evaluated in this work aimed at selection of plants to be used in remediation of environments contaminated by arsenic (As). The experiments were carried out in a greenhouse during six days in pots containing Hoagland solution (¼ ionic strength) at As concentrations of 0.5; 2.5 and 5.0 mg L-1. The three species showed greater As accumulation as the concentration of the metalloid in solution increased. However, a reduction was detected in fresh and dry mass gain when the plants were exposed to high As concentrations. The macrophytes showed differences in efficiency of removal of As in solution. A. caroliniana, S. minima and L. gibba accumulated, on average, 0.130; 0.200; and 1.397 mg mDM-1, respectively, when exposed to 5.0 mg L-1 of As. The macrophytes absorbed a greater quantity of As in solution with low phosphate content. The greater As concentration in L. gibba tissues lowered the chlorophyll and carotenoid contents as shown by the high chlorosis incidence. Lemna gibba also exhibited a decrease in leaf size, with the total chlorophyll and carotenoid synthesis not being affected by As in A. caroliniana. This species exhibited purplish leaves with high concentration of anthocyanin, whose presence suggested association to phosphate deficiency. Marginal necrosis occurred on S. minima floating leaves, with the released daughter-plants not showing any visual symptoms during the treatment. The percentage of As removed from the solution decreased when the plants were exposed to high concentrations of the pollutant. Among the three species studied, only L. gibba could be considered an As hyper-accumulator. The use of this plant species for remediation of aquatic environments was shown to be limited and requires further investigation.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.
Resumo:
Conyza canadensis is a widespread weed species forming dense populations in most regions of China. Petri dish bioassays with aqueous extracts of the aboveground parts and roots of C. canadensis at three concentrations (0.05, 0.1, and 0.2 g mL-1) were undertaken to investigate the autotoxic effects of C. canadensis, and the possible effects on three dominant native weed species, Plantago asiatica, Digitaria sanguinalis and Youngia japonica. The results showed that seed germination and the shoot length of three native species were significantly inhibited by aqueous extracts of C. canadensis at almost all concentrations that generally increased with increasing extract concentration. However, the seed germination and shoot length of C. canadensis itself was not significantly affected by the same extracts at all concentrations. These results suggested that the potential allelopathic compounds produced by the tissue of C. canadensis may contribute to its invasive success in invading southern China.
Resumo:
ABSTRACTHerbicides mixtures are used in many situations without the adequate knowledge related with the effect on major target weeds. The objective of this study was to evaluate the effects of different herbicides mixtures used in irrigated rice in order to establish the adequate combinations for the prevention and management of herbicide resistance in barnyardgrass (Echinochloa crus-galli). Three experiments were performed at field conditions with all major post-emergent herbicides used in irrigated rice in Brazil. The first experiment was performed with barnyardgrass resistant to imidazolinone herbicides and herbicides applied at label rates. The second and third experiments were performed with barnyardgrass resistant and susceptible to imidazolinone herbicides applied at doses of 50 or 75% of the label rates. The occurrence of additive, synergistic and antagonistic effects was identified at 18, 18 and 64%, respectively, among the total of 50 different associations of herbicide and rates evaluated. In general, the mixture of ACCase inhibitors with ALS inhibitors, quinclorac, clomazone + propanil or thiobencarb resulted in antagonism. Sinergic mixtures were found in clomazone with propanil + thiobencarb, profoxydim with cyhalofop-butyl or clomazone, and quinclorac with imazapyr + imazapic, bispyribac-sodium or cyhalofop-butyl. The mixtures of quinclorac with profoxydim were antagonic. Rice grain yield varied according to the efficiency of weed control. Seveveral mixtures were effective for imidazolinone resistant barnyardgrass control.
Exploring Herbicidal Potential of Aqueous Extracts of Some Herbaceous Plants Against Parthenium Weed
Resumo:
To assess the phytotoxic potential of Achyranthes aspera, Alternanthera philoxeroides, Datura metel and Rumex dentatus against Parthenium hysterophorus, 5% (w/v on dry weight basis) aqueous extracts from root, stem, leaf, flower and whole plant were tested through a Petri plate-based germination and pot-cultured seedling bioassays. Achyranthes aspera and A. philoxeroides inhibited parthenium weed germination more than extracts from other species. Whole plant, leaf and fruit extracts of A. aspera reduced the germination percentage (5%); leaf extract from A. philoxeroides caused lower germination index (0.4), higher mean germination time (14 d) and longer time to 50% germination (13.5 d) of parthenium weed. In the foliar spray bioassay, A. aspera reduced parthenium weed shoot growth more than the other species whereas R. dentatus caused more reduction in root growth. Whole plant extract from A. aspera caused maximum reduction in parthenium weed seedling vigor index (98%) and seedling biomass (96%). The aqueous extracts of A. aspera and A. philoxeroides contained higher concentrations of phenolics viz. gallic (16.9 mg L-1), caffeic (7.4 mg L-1), chromatotropic (63.8 mg L-1), p-coumaric (10.5 mg L-1), m-coumaric (3.1 mg L-1), syringic (9.21 mg L-1) and 4 hydroxy-3-methoxy benzoic (118.6 mg L-1) acids compared with extracts of the other two species tested.