47 resultados para Análise de Redes
Resumo:
O bem-estar dos animais tem sido importante tópico de pesquisa na produção animal, principalmente no tocante às formas de sua avaliação. Na avaliação do bem-estar animal, a vocalização mostra-se como ferramenta interessante, por fornecer dados de forma não-invasiva, podendo também ser facilmente automatizada. O presente trabalho teve o objetivo de implementar algoritmo baseado em redes neurais artificiais, capaz de reconhecer vocalizações relacionadas com padrões indicativos de bem-estar. A pesquisa teve duas partes, sendo a primeira o desenvolvimento do algoritmo, e a segunda, sua validação com dados de campo. Registros prévios permitiram o desenvolvimento do algoritmo, a partir de comportamentos observados em porcas alojadas em gaiolas de maternidade. O software Matlab® foi utilizado na implementação da rede. Foi selecionado um algoritmo de gradiente de retropropagação para treinar a rede com os seguintes critérios de parada: máximo de 5.000 iterações ou soma quadrática do erro menor que 0,1. A validação deu-se com porcas e leitões alojados em granja comercial. Dentre os comportamentos usuais, os que mereceram destaque foram: a disputa por alimento no momento das mamadas e o eventual risco de agressão involuntária entre os leitões ou entre esses e a porca. O algoritmo foi capaz de reconhecer, por meio da intensidade do ruído, a situação inerente ao risco de redução do bem-estar dos leitões.
Resumo:
Neste trabalho, foi aplicado o processamento de imagens digitais auxiliado pelas Redes Neurais Artificiais (RNA) com a finalidade de identificar algumas variedades de soja por meio da forma e do tamanho das sementes. Foram analisadas as seguintes variedades: EMBRAPA 133, EMBRAPA 184, COODETEC 205, COODETEC 206, EMBRAPA 48, SYNGENTA 8350, FEPAGRO 10 e MONSOY 8000 RR, safra 2005/2006. O processamento das imagens foi constituído pelas seguintes etapas: 1) Aquisição da imagem: as amostras de cada variedade foram fotografadas por máquina fotográfica Coolpix995, Nikon, com resolução de 3.34 megapixels; 2) Pré-processamento: um filtro de anti-aliasing foi aplicado para obter tons acinzentados da imagem; 3) Segmentação: foi realizada a detecção das bordas das sementes (Método de Prewitt), dilatação dessas bordas e remoção de segmentos não-necessários para a análise. 4) Representação: cada semente foi representada na forma de matriz binária 130x130, e 5) Reconhecimento e interpretação: foi utilizada uma rede neural feedforward multicamadas, com três camadas ocultas. O treinamento da rede foi realizado pelo método backpropagation. A validação da RNA treinada mostrou que o processamento aplicado pode ser usado para a identificação das variedades consideradas.