88 resultados para Aluminum ores.
Resumo:
This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.
Resumo:
Alumina supported niobium oxide was prepared by chemical vapor deposition (CVD) of NbCl5. The alumina was calcined and pretreated at differents temperatures in order to vary the density of OH groups on the surface which was determined by thermogravimetric analysis. A good correlation was found between the amount of anchored niobium and the total number of anionic sites (oxide and hydroxyl groups) on the surface of the alumina. The infrared spectra on the OH stretching region indicate that OH groups coordinated to at least one tetrahedral aluminum were more reactive towards NbCl5.
Resumo:
A sodium mordenite zeolite (Na-MOR) was synthesized and modified by dealumination with chloridric acid solution (H-MOR). X-Ray Diffraction (XRD), Inductive Coupled Plasm (ICP) and Scanning Electron Micrograph (SEM) techniques were used for sample characterization. The zeolite catalytic behavior was evaluated through toluene disproportionation at 435°C. It was verified that mordenites were very selective for the disproportionation reaction and the samples with higher aluminum content showed larger initial activity, however, these samples showed too a higher deactivation velocity due to a blockage of the unidimensional porous system of the zeolite by coke deposits. The selectivity to xylene isomers was practically not influenced by the Si/Al ratio and changed with the time on stream, due to coke formation. Transition state shape selectivity inside the mordenite pores is also discussed.
Resumo:
The preparation of gamma-LiAlO2 by coprecipitation and sol-gel synthesis was investigated. Ceramic powders obtained by coprecipitation synthesis were prepared from aqueous solutions of aluminum and lithium nitrates using sodium hydroxide as precipitant agent. By sol-gel synthesis, the ceramic powders were prepared from hydrolysis of aluminum isopropoxide. The materials obtained by two routes of synthesis were dried at 80ºC and calcined at 550, 750, 950 and 1150ºC. The characterization was done by X-ray diffraction, infrared spectroscopy, emission and absorption atomic spectrometry, helium picnometry, specific surface area (BET method) and scanning electronic microscopy. Mixtures of crystalline phases were obtained by coprecipitation synthesis: 80ºC- LiAl2(OH)7.2H2O + Al(OH)3; 550 and 750ºC- alpha-LiAlO2 + eta-Al2O3; 950 and 1150ºC- gamma-LiAlO2 + LiAl5O8. Chemical analysis showed molar ration Al/Li @ 3. Crystalline single-phases were obtained by sol-gel synthesis above 550ºC: 550ºC-alpha-LiAlO2; 750, 950 and 1150ºC-gamma-LiAlO2. These powders presented molar ration Al/Li @ 1. Thus, gamma-LiAlO2 crystalline phase was obtained at 750ºC by sol-gel synthesis while by coprecipitation synthesis, a mixture of crystalline phases was obtained. These results showed the superiority of the sol-gel synthesis for the preparation of pure gamma-LiAlO2.
Resumo:
Aluminum and copper doped hematite was evaluated in the high temperature shift (HTS) reaction at several temperatures in order to find catalysts that can work in different operational conditions. It was found that the catalysts work in kinetic regime in the range of 300-400 ºC. Both copper and aluminum increases the activity and selectivity. Aluminum acts as textural promoter whereas copper acts as structural one. The most promising catalyst is that with both copper and aluminum which showed higher activity and selectivity than a commercial sample. This catalyst has the advantages of being non toxic and can work at low temperatures.
Resumo:
Despite the fact that boranes are frequently used in amide reductions, the reaction mechanisms of the involved are note well known. This work presents the results of a bibliographic search on probable amide reduction mechanisms and an analysis of the existing literature. Steric and electronic effects were considered in light of reactivity since it could be concluded that the formation of intermediates and products depends mainly on the substitution patterns of both the boron and nitrogen atoms. Otherwise, results described in the literature for the reactions of boranes, sodium borohydride, lithium aluminum hydride, alkylboranes or haloboranes with others functional groups such as carboxylic acids, esters, ketones and alkenes were analysed with the aim to obtain something about the N-substituted amide reactions employing boranes.
Resumo:
Aluminum metal and aluminum compounds have many applications in several branches of the industry and in our daily lives. The most important raw material for aluminum and its manufactured compounds is bauxite, a rock constituted mainly by aluminum hydroxides minerals. In this work, a didactic experiment aiming the preparation of alumina and potassium alum starting from bauxite is proposed for undergraduate students. Both compounds are of great commercial, scientific and historical interest. The experiment involves applications of important chemical principles such as acid-base and precipitation. Some chemical properties and uses of aluminum compounds are also illustrated.
Resumo:
Copper, aluminum and iron concentrations were determined in four geochemical fractions of three different basaltic soils from the northwest region of the Parana State, Brazil. The fractions examined were the reducible manganese dioxide and amorphous iron oxide, crystaline iron oxide, organic and residual. Metal concentrations were determined in the extracts by flame atomic absorption spectrophotometry. High Fe concentrations were extracted from the crystalline iron oxide (>20%), as well as the amorphous iron oxide (>12%). Copper was extracted from the amorphous and crystalline iron oxides in the range 5 to 12%, but low concentrations were bound to organic matter. Low concentrations of aluminum were extracted (<8%) from the amorphous and crystaline iron oxides, and organic matter. High concentrations of aluminum were found in the residual fraction.
Resumo:
The abatement of recalcitrant lignin macromolecules from effluents of pulp and paper industry was investigated by combined process. Flocculation and coagulation with aluminum sulfate and natural polyelectrolytes extracted from cactus Cereus peruvianus were used in the first step. After separation of solid residues by filtration, the photochemical methods using TiO2 as catalyst were employed for photocatalytic degradation of lignin compounds from solution. The abatement of lignin compounds after flocculation and coagulation was 46%, and after the overall process, the pollutants reduction observed were 66%. The remaining organic compounds may be removed by any biological treatment.
Resumo:
The quantitative chemical analysis of the Brazilian sugar cane spirit distilled from glass column packaged with copper, stainless steel, aluminum sponge, or porcelain balls is described. The main chemical compounds determined by gas chromatography coupled with flame ionization (FID) and flame photometric (FPD) detectors and liquid chromatography coupled with diode array detector are aldehydes, ketones, carboxylic acids, alcohols, esters and dimethylsulfite (DMS). The spirits produced either in columns filled with copper or aluminum pot still exhibits the lowest DMS contents but the higher sulfate and methanol contents, whereas spirits produced in stainless steel or porcelain showed higher DMS concentration and lower teors of sulfate ion and methanol. These observations are coherent with DMS oxidation to sulfate, with methanol as by product, in the presence of either copper or aluminum.
Resumo:
Chromium and potassium-doped iron oxides are widely used as industrial catalysts in the dehydrogenation of ethylbenzene to produce styrene. They have several advantages but deactivate with time, because of the loss of potassium. Also, they are toxic due to chromium compounds. Therefore there is a need for developing alternative non toxic catalysts without potassium. Then, iron and aluminum compounds were prepared by different methods in this work. Different phases were produced depending on the preparation method. Aluminum-doped hematite was more active and selective to styrene than the aluminum ferrite. Aluminum acts both as textural and structural promoter in the catalysts.
Resumo:
An overview about the role of alkoxides in the most recent uses of the sol-gel process in the synthesis of new materials is presented. Special attention is focused on the uses of silicon, aluminum, zirconium and titanium alkoxides. This review shows that the alkoxides enable the synthesis of new matrices with controlled surface area, acidity and porosity, as well as some unusual properties. The property associated with the solubility of metal alkoxides opens enormous possibilities of combining them for the synthesis films of powders with a very large range of metal compositions.
Resumo:
Electroflotation (EF) with aluminum electrodes was applied in the treatment of Brazilian industrial coconut wastewater. The results show that EF with polarity inversion is a very good treatment when compared to others. The removal of pollutants in the wastewater after EF with polarity inversion was 96.3% of oils and grease, 99% of color and 66% of total organic carbon. Also, metal concentrations, turbidity and total solids were reduced.
Resumo:
The destabilization mechanism of suspensions of positively charged iron oxide particles by aluminum sulphate was investigated, aiming to evaluate the efficiency of the latter as a coagulant for natural surface waters from iron ore mining plants. Synthetic waters that simulate natural suspensions were used. The best coagulant dosage was found to be 100 mg/L at pH 4. The specific adsorption of hydrolysis products of aluminum salts on iron oxide particles and heterocoagulation processes involving differently charged substrates are proposed to explain the turbidity reduction of the suspensions.
Resumo:
In this work a closed-vessel microwave-assisted acid decomposition procedure for clays was developed. Aluminum, Ca, Fe, K, Mg, Na, Si, and Ti were determined in clay digestates by inductively coupled plasma optical emission spectrometry. The most critical parameter for total decomposition of clays was the composition of the reagent mixture. The applied power and the heating time exerted a less critical influence. Best decomposition conditions were attained using a reagent mixture containing 4 mL aqua regia plus 3 mL HF and the heating program was implemented in 12 min. The accuracy of the results was demonstrated using two standard reference materials and a paired t-test showed a good agreement between determined and certified values at a 95% confidence level.