64 resultados para Aldrich, Thomas Bailey, 1836-1907
Resumo:
The aim of the present research was to evaluate the potential of Nectomys rattus, the "water rat", to develop Schistosoma mansoni infection. Comparison with N. squamipes was carried out. Both species of rodents were submitted to transcutaneous infection using different infective cercariae loads: 50, 100 or 500. N. rattus showed high susceptibility to S. mansoni, with an infection rate of 71%. Rodents were able to excrete viable eggs of S. mansoni in the feaces during all infection period. For both species, the small intestine, followed by the liver and the large intestine, presented the highest concentration of eggs among the surveyed organs. Infection caused no animal death. Moreover, N. rattus accomplished the parasite's life cycle, by infecting the snails Biomphalaria glabrata and later Mus musculus. These evidences indicate that both N. rattus, as for N. squamipes are potential reservoirs for schistosomiasis in Brazil. Considering the fact that N. rattus and N. squamipes exist in the same natural ecosystems of S. mansoni, we suggest that these rodents must be regarded as influential factors in epidemiology surveys.
Resumo:
Aiming to detail data obtained through brightfield microscopy (BM) on reproductive, excretory and digestive system, specimens of Schistosoma mansoni eight weeks old, were recovered from SW mice, stained with Langeron's carmine and analyzed under a confocal laser scanning microscope CLSM 410 (Carl Zeiss). The reproductive system presented a single and lobate testis, with intercommunications between the lobes without efferent duct. Supernumerary testicular lobe was amorphous and isolated from the normal ones. Collecting tubules (excretory ducts), followed by the excretory bladder, opening to the external media through the excretory pore, were observed at the posterior extremity of the body. In the digestive tract, a cecal swelling was noted at the junction that originates the single cecum. It was concluded that through confocal laser scanning microscopy, new interpretations of morphological structures of S. mansoni worms could be achieved, modifying adopted and current descriptions. The gonad consists of a single lobed testis, similar to that observed in some trematode species. Moreover, the same specimens can be observed either by BM or CLSM, considering that the latter causes only focal and limited damage in tissue structures.
Resumo:
A computer software for image analysis (IMAGE PRO PLUS, MEDIA CYBERNETICS) was utilized in male and females adult worms, aiming the morphological characterization of Schistosoma mansoni samples isolated from a slyvatic rodent, Nectomys squamipes, and humans in Sumidouro, Rio de Janeiro, Brazil and recovered from Mus musculus C3H/He. The following characters for males's testicular lobes were analyzed: number, area, density, larger and smaller diameter, longer and shorter axis and perimeter and extension; for females: area, longer and shorter axis, larger and smaller diameter and perimeter of the eggs and spine; oral and ventral suckers area and distance between them in both sex were determined. By the analysis of variance (one way ANOVA) significant differences (p<0.05) were observed in all studied characters, except for the density of testicular lobes. Significant differences (p<0.05) were detected for all characters in the female worms. Data ratify that sympatric isolates present phenotypic differences and the adult female characters are useful for the proper identification of S. mansoni isolates.
Resumo:
Specimens of Biomphalaria tenagophila exposed to miracidia of Schistosoma mansoni were submitted to different desiccation periods as follows: group I: 24 h after exposure, desiccated for 28 days; group II: after cercariae elimination, desiccated for 7 days; group III: 21 days after exposure, desiccated for 7 days; group IV: 14 days after exposure, desiccated for 14 days; group V: 7 days after exposure, desiccated for 21 days. From the obtained data it was verified that desiccation was not capable of interrupting the development of larvae of S. mansoni in mollusks. A delay in the development of S. mansoni larvae in groups I, III, IV and V was observed. A pause was verified in the development of S. mansoni larvae in groups II, III, IV and V. Some larvae, in groups I, III, IV and V, did not suffer as a result of desiccation and continued their development. Larvae in the cercariae stage were shown to be more sensitive to desiccation. It was possible to obtain clearing of mollusks infected by sporocysts II and cercariae using a period of 7 days of desiccation.
Resumo:
Compatibility between Schistosoma mansoni and Biomphalaria straminea when exposed to the parasite on the first four months of age was assessed for five parasitological aspects: indices of infection and mortality, duration of precercarial and cercarial periods, and rate of cercarial emission. Infections were made on molluscs from laboratory colonies, at the following ages: 8, 13, 18, 21, 53, 83 and 114 days. Two B. straminea colonies were used (Camorim, PE and Picos, PI), and one B. glabrata colony (Ressaca, MG) was used as control. The main results are as follows: (I) infection was significantly associated with mollusc age, being proportionally higher in sexually immature than in mature molluscs for the three colonies; (II) for B. straminea from Camorim, mortality did not differ significantly between infected and non-infected snails; for B. straminea from Picos significantly more deaths occurred among infected than among non-infected snails, while the opposite was observed for B. glabrata from Ressaca; (III) for the three colonies, the precercarial period was significantly shorter for immature molluscs than for mature ones; (IV) the duration of the cercarial period was extremely variable for the three colonies; (V) sexual maturity did not influence cercarial emission for the three colonies.
Resumo:
Due to the semi aquatic habits and the overlap of the geographical distribution of the water-rat, Nectomys spp., with schistosomiasis endemic areas, these wild rodents are very likely to acquire Schistosoma mansoni infection in their daily activities. The role of the water-rat in the S. mansoni cycle would be substantiated if one could prove that these rodents acquire the parasite during their own activity time, a completely independent time schedule of human activities. To pursue this goal, we performed two field experiments in the municipality of Sumidouro, State of Rio de Janeiro, Brazil, a schistosomiasis endemic area where N. squamipes is found naturally infected. One experiment was devised as a series of observations of activity time of the water-rat. The other experiment was a test of the occurrence of late transmission of S. mansoni to the water-rat. The daily activity pattern showed that the water-rat is active chiefly just after sunset. At both diurnal and late exposition essays the water-rat sentinels got infected by S. mansoni. These findings clarify ecological and behavioral components necessary to the adaptation of S. mansoni to the water-rat as a non human definitive host and the existence of a transmission cycle involving this animals as a reservoir.
Resumo:
Ecological changes from water resources development projects often affect the epidemiology of water-associated diseases. In order to investigate the occurrence and distribution of freshwater snails of medical and veterinary importance in the area of influence of the Serra da Mesa Hydroelectric a survey has been performed since 1997 and revealed the occurrence of well-established populations of Biomphalaria straminea (Dunker, 1848) in the 8 municipalities surrounding the lake. Areas of epidemiologic risk for schistosomiasis were selected and studies of parasite-mollusc compatibility were undertaken using specimens from 19 populations of B. straminea and 3 strains (CM, EC and PB) originally isolated from B. straminea. Among 1,135 specimens used 15 became infected (infection index of 1.3%) and 8 populations were susceptible to the schistosome strains: B. straminea from Campinorte (Castelão, susceptible to CM and EC strains, and Planeta Água, EC strain), Colinas (Tocantinzinho river, CM and EC strains), Minaçu (Canabrava river, EC strain), Niquelândia (Codemin, CM and PB strains, and Almas river, CM strain), Uruaçu (touristic area, PB strain) and Santa Rita do Novo Destino (Maranhão river, CM and EC strains). These results, associated with marked social and ecological changes occurred, strongly suggest the possibility of B. straminea coming to act as a vector of schistosomiasis in the studied area.
Resumo:
The genus Chalcolepidius is revised. Type specimens of 65 nominal species, except C. costatus Pjatakowa, 1941, C. fleutiauxi Pjatakowa, 1941 and C. viriditarsus Schwarz, 1906, are examined. Eighty five species are studied, of which 34 are synonymyzed and 12 new species described; three species, C. alicii Pjatakowa, 1941, C. haroldi Candèze, 1878 and C. unicus Fleutiaux, 1910, formely included in this genus, are not congeneric and are removed; C. validus Candèze, 1857 is revalidated. The genus is now formed by 63 species. Redescriptions, illustrations and a key for the examined species, and a cladistic analysis for groups of species are also included. New synonyms established: C. apacheanus Casey, 1891 = C. simulans Casey, 1907 syn. nov. = C. acuminatus Casey, 1907 syn. nov. = C. nobilis Casey, 1907 syn. nov.; C. approximatus Erichson, 1841 = C. aztecus Casey, 1907 syn. nov. = C. niger Pjatakowa, 1941 syn. nov.; C. attenuatus Erichson, 1841 = C. cuneatus Champion, 1894 syn. nov. = C. tenuis Champion, 1894 syn. nov.; C. aurulentus Candèze, 1874 = C. candezei Dohrn, 1881 syn. nov. = C. grossheimi Pjatakowa, 1941 syn. nov.; C. bomplandii Guérin, 1844 = C. humboldti Candèze, 1881 syn. nov.; C. chalcantheus Candèze, 1857 = C. violaceous Pjatakowa, 1941 syn. nov.; C. cyaneus Candèze, 1881 = C. scitus Candèze, 1889 syn. nov. = C. abbreviatovittatus Pjatakowa, 1941 syn. nov.; C. desmarestii Chevrolat, 1835 = C. brevicollis Casey, 1907 syn. nov.; C. gossipiatus Guérin, 1844 = C. erichsonii Guérin-Méneville, 1844 syn. nov. = C. lemoinii Candèze, 1857 syn. nov.; C. inops Candèze, 1886 = C. murinus Champion, 1894 syn. nov.; C. jansoni Candèze, 1874 = C. mucronatus Candèze, 1889 syn. nov.; C. lacordairii Candèze, 1857 = C. exquisitus Candèze, 1886 syn. nov. = C. monachus Candèze, 1893 syn. nov.; C. lenzi Candèze, 1886 = C. behrensi Candèze, 1886 syn. nov.; C. oxydatus Candèze, 1857 = C. jekeli Candèze, 1874 syn. nov.; C. porcatus (Linnaeus, 1767) = C. peruanus Candèze, 1886 syn. nov. = C. flavostriatus Pjatakowa, 1941 syn. nov. = C. herbstii multistriatus Golbach, 1977 syn. nov.; C. rugatus Candèze, 1857 = C. amictus Casey, 1907 syn. nov.; C. smaragdinus LeConte, 1854 = C. ostentus Casey, 1907 syn. nov. = C. rectus Casey, 1907 syn. nov.; C. sulcatus (Fabricius, 1777) = C. herbstii Erichson, 1841 syn. nov; C. virens (Fabricius, 1787) = C. perrisi Candèze, 1857 syn. nov.; C. virginalis Candèze, 1857 = C. championi Casey, 1907 syn. nov.; C. viridipilis (Say, 1825) = C. debilis Casey, 1907 syn. nov.; C. webbi LeConte, 1854 = C. sonoricus Casey, 1907 syn. nov.; C. zonatus Eschscholtz, 1829 = C. longicollis Candèze, 1857 syn. nov. New species described: C. albisetosus sp. nov. (Ecuador), C. albiventris sp. nov. (Mexico: Veracruz), C. copulatuvittatus sp. nov. (Venezuela), C. extenuatuvittatus sp. nov. (Venezuela), C. fasciatus sp. nov. (Mexico: Durango), C. ferratuvittatus sp. nov. (Ecuador), C. proximus sp. nov. (Mexico: Sinaloa), C. serricornis sp. nov. (Mexico: Veracruz), C. spinipennis sp. nov. (Mexico: Veracruz), C. supremus sp. nov. (Venezuela), C. truncuvittatus sp. nov. (Mexico: Tamaulipas) and C. virgatipennis sp. nov. (Mexico: Durango). Redescribed species: C. angustatus Candèze, 1857, C. apacheanus Casey, 1891, C. approximatus Erichson, 1841, C. attenuatus Erichson, 1841, C. aurulentus Candèze, 1874, C. bomplandii Guérin-Méneville, 1844, C. boucardi Candèze, 1874, C. chalcantheus Candèze, 1857, C. corpulentus Candèze, 1874, C. cyaneus Candèze, 1881, C. desmarestii Chevrolat, 1835, C. dugesi Candèze, 1886, C. erythroloma Candèze, 1857, C. eschscholtzi Chevrolat, 1833, C. exulatus Candèze, 1874, C. fabricii Erichson, 1841, C. forreri Candèze, 1886, C. fryi Candèze, 1874, C. gossipiatus Guérin-Méneville, 1844, C. inops Candèze, 1886, C. jansoni Candèze, 1874, C. lacordairii Candèze, 1857, C. lafargi Chevrolat, 1835, C. lenzi Candèze, 1886, C. limbatus (Fabricius, 1777), C. mexicanus Castelnau, 1836, C. mniszechi Candèze, 1881, C. mocquerysii Candèze, 1857, C. morio Candèze, 1857, C. obscurus Castelnau, 1836, C. oxydatus Candèze, 1857, C. porcatus (Linnaeus, 1767), C. pruinosus Erichson, 1841, C. rodriguezi Candèze, 1886, C. rostainei Candèze, 1889, C. rubripennis LeConte, 1861, C. rugatus Candèze, 1857, C. silbermanni Chevrolat, 1835, C. smaragdinus LeConte, 1854, C. sulcatus (Fabricius, 1777), C. tartarus Fall, 1898, C. validus Candèze, 1857, reval., C. villei Candèze, 1878, C. virens (Fabricius, 1787), C. virginalis Candèze, 1857, C. viridipilis (Say, 1825), C. webbi LeConte, 1854, C. zonatus Eschscholtz, 1829.
Resumo:
Searching and handling time of Chrysoperla externa (Hagen, 1861) (Neuroptera, Chrysopidae) larvae fed on Uroleucon ambrosiae (Thomas, 1878) (Hemiptera, Aphididae). The objective of this research was to determine the searching and handling times of three larval instars of C. externa fed on U. ambrosiae at densities of 30, 40 and 50 per vial, with the feeding of the larvae at the preceding instars being U. ambrosiae nymphs or Sitotroga cerealella (Olivier, 1819) eggs. The larvae were maintained at 25 ± 2 ºC, 70 ± 10% RH and a 14-h photophase. A completely randomized design in a 6 x 3 factorial scheme with 12 replicates was adopted. The shortest searching time was found for the 2nd and 3rd instar larvae of C. externa, and this parameter was variable depending on the feeding given to the larvae previously. The handling time was similar for the 1st, 2nd and 3rd instar larvae. The longest searching time was found at an aphid density of 30, as compared to densities of 40 and 50 prey, with which there were no significant differences. Prey density did not have any influence on handling time.
Resumo:
Feeding potential of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) in different densities of Uroleucon ambrosiae (Thomas) (Hemiptera, Aphididae). The feeding potential of 2nd and 3rd instar larvae of Chrysoperla externa (Hagen, 1861) in relation to different densities of 30, 40 and 50 nymphs of Uroleucon ambrosiae (Thomas, 1878) at 3rd and 4th instars was evaluated. The treatments were individualized into 2.5 cm in diameter and 8.5 cm tall flat bottom glass vials and maintained in a controlled environmental chamber at 25±2 ºC temperature, 70±10% RH and 14 h photophase. A completely randomized experimental design with 10 replications was used. The consumption of the prey nymphs by the predator larvae was evaluated after 1, 2, 4, 8, 16 and 24 h from the beginning of the experiment and at every subsequent 24 h period until 2nd instar larvae molted or 3rd instar larvae pupated. Results have shown that for 2nd instar larvae, during the 1 h to 24 h period, there was a decreasing prey consumption at the 30 and 40 prey densities. However an increase in the consumption at the 50 prey density was observed. After this period, C. externa larvae presented a progressive increase on nymphs consumption as a function of the prey density. The same occurred with de 3rd instar predator larvae in all treatments. When daily mean consumption was evaluated the predator/prey ratio was 1:23, 1:27 and 1:33 for 2nd instar larvae and 1:27, 1:33 and 1:41 for 3rd instar larvae at 30, 40 and 50 nymph densities, respectively.
Resumo:
Protomeliturga turnerae (Ducke, 1907) represents the monotypic tribe Protomeliturgini (Andrenidae, Panurginae). The species is oligolectic on flowers of Turnera L. (Turneraceae). A survey of bees on flowers of Turneraceae and of material in entomological collections showed that P. turnerae is common and endemic in Northeastern Brazil, occurring from the State of Maranhão to Alagoas. In João Pessoa, Paraíba, we studied the reproductive biology and mating behavior of P. turnerae and its relations to plants. At the study site, the species was univoltine with males emerging 5-8 days before the females. Soon after emergence the males established territories on flowers of Turnera subulata Smith which they occupied during several days. Parts of each territory overlapped with those of 1 to 3 other males. On the average, a territory comprised 124 flowers, 59 being shared with other males. Males showed two mating strategies: patrolling the flowers of T. subulata in which females collected pollen or waiting in a specific flower inside the territory for arriving females. P. turnerae showed multiple mating. On the average, a male mated 7 times a day, each copula lasting 3 to 25 sec. We observed 2 to 3 males attempting to copulate with the same female. At the end of anthesis of T. subulata the males stopped flying activity and remained inside flowers until their closure.
Resumo:
Contributions to the knowledge of Banasa Stål (Hemiptera, Heteroptera, Pentatomidae): Banasa chaca Thomas. The male of Banasa chaca Thomas is described with emphasis on external and internal genitalia and the female internal genitalia is described. Banasa chaca is newly recorded from Buenos Aires Province (Argentina).
Resumo:
Brassica chinensis var. parachinensis, introduzida no Brasil em 1992, apresenta alto teor de vitamina A e ciclo curto. As sementes foram submetidas a 24 tratamentos em laboratório e 12 em campo, com o objetivo de avaliar o padrão de germinação e o crescimento das plântulas. Em laboratório, as sementes foram indiferentes à luz e mostraram baixa sensibilidade à ação escarificante do hipoclorito de sódio. Ácido giberélico, KNO3, escarificação e estratificação não modificaram sua germinabilidade (96-100%) nem o tempo médio de germinação (1-1,28 dias) em relação ao controle. Em condições de campo os maiores valores de emergência (89,2-96,4%) e os maiores índices de velocidade de emergência (14,2-17,4) ocorreram em solo com adubação mineral, entre 0,5 e 1,5 cm de profundidade. Os menores tempos médios de emergência foram registrados entre 0,5 e 1,5 cm de profundidade (2,90-3,97 dias), com os três adubos testados (mineral, esterco de gado e de galinha). As plântulas se mostraram sensíveis ao hipoclorito de sódio, com redução significativa do hipocótilo e da raiz primária. A estratificação das sementes por 24 horas estimulou o crescimento da raiz primária, o que beneficia o estabelecimento da plântula no solo.
Resumo:
Simaba polyphylla is a small tree found in the Amazon region, known by the common names "marupazinho" or "serve para tudo". It is used in traditional medicine for the treatment of fevers. This work describes the phytochemical study of the hexane extract and chloroform fraction obtained by partitioning the methanol extract of stems, which led to isolation and identification of the triterpenes niloticin, dyhidroniloticin, taraxerone and of the cytotoxic alkaloid 9-methoxy-canthin-6-one. These compounds are described for the first time in S. polyphylla.