51 resultados para Air pollution management
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with inflammatory cell reactions, tissue destruction and lung remodeling. Many signaling pathways for these phenomena are still to be identified. We developed a mouse model of COPD to evaluate some pathophysiological mechanisms acting during the initial stage of the disease. Forty-seven 6- to 8-week-old female C57/BL6 mice (approximately 22 g) were exposed for 2 months to cigarette smoke and/or residual oil fly ash (ROFA), a concentrate of air pollution. We measured lung mechanics, airspace enlargement, airway wall thickness, epithelial cell profile, elastic and collagen fiber deposition, and by immunohistochemistry transforming growth factor-β1 (TGF-β1), macrophage elastase (MMP12), neutrophils and macrophages. We observed regional airspace enlargements near terminal bronchioles associated with the exposure to smoke or ROFA. There were also increases in airway resistance and thickening of airway walls in animals exposed to smoke. In the epithelium, we noted a decrease in the ciliated cell area of animals exposed to smoke and an increase in the total cell area associated with exposure to both smoke and ROFA. There was also an increase in the expression of TGF-β1 both in the airways and parenchyma of animals exposed to smoke. However, we could not detect inflammatory cell recruitment, increases in MMP12 or elastic and collagen fiber deposition. After 2 months of exposure to cigarette smoke and/or ROFA, mice developed regional airspace enlargements and airway epithelium remodeling, although no inflammation or increases in fiber deposition were detected. Some of these phenomena may have been mediated by TGF-β1.
Resumo:
There is a demonstrable association between exposure to air pollutants and deaths due to cardiovascular diseases. The objective of this study was to estimate the effects of exposure to sulfur dioxide on mortality due to circulatory diseases in individuals 50 years of age or older residing in São José dos Campos, SP. This was a time-series ecological study for the years 2003 to 2007 using information on deaths due to circulatory disease obtained from Datasus reports. Data on daily levels of pollutants, particulate matter, sulfur dioxide (SO2), ozone, temperature, and humidity were obtained from the São Paulo State Environmental Agency. Moving average models for 2 to 7 days were calculated by Poisson regression using the R software. Exposure to SO2 was analyzed using a unipollutant, bipollutant or multipollutant model adjusted for mean temperature and humidity. The relative risks with 95%CI were obtained and the percent decrease in risk was calculated. There were 1928 deaths with a daily mean (± SD) of 1.05 ± 1.03 (range: 0-6). Exposure to SO2 was significantly associated with mortality due to circulatory disease: RR = 1.04 (95%CI = 1.01 to 1.06) in the 7-day moving average, after adjusting for ozone. There was an 8.5% decrease in risk in the multipollutant model, proportional to a decrease of SO2 concentrations. The results of this study suggest that residents of medium-sized Brazilian cities with characteristics similar to those of São José dos Campos probably have health problems due to exposure to air pollutants.
Resumo:
Exposure to nitrogen oxides (NOx) emitted by burning fossil fuels has been associated with respiratory diseases. We aimed to estimate the effects of NOx exposure on mortality owing to respiratory diseases in residents of Taubaté, São Paulo, Brazil, of all ages and both sexes. This time-series ecological study from August 1, 2011 to July 31, 2012 used information on deaths caused by respiratory diseases obtained from the Health Department of Taubaté. Estimated daily levels of pollutants (NOx, particulate matter, ozone, carbon monoxide) were obtained from the Centro de Previsão de Tempo e Estudos Climáticos Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System. These environmental variables were used to adjust the multipollutant model for apparent temperature. To estimate association between hospitalizations owing to asthma and air pollutants, generalized additive Poisson regression models were developed, with lags as much as 5 days. There were 385 deaths with a daily mean (±SD) of 1.05±1.03 (range: 0-5). Exposure to NOx was significantly associated with mortality owing to respiratory diseases: relative risk (RR)=1.035 (95% confidence interval [CI]: 1.008-1.063) for lag 2, RR=1.064 (95%CI: 1.017-1.112) lag 3, RR=1.055 (95%CI: 1.025-1.085) lag 4, and RR=1.042 (95%CI: 1.010-1.076) lag 5. A 3 µg/m3 reduction in NOx concentration resulted in a decrease of 10-18 percentage points in risk of death caused by respiratory diseases. Even at NOx concentrations below the acceptable standard, there is association with deaths caused by respiratory diseases.
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.
Resumo:
Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.
Resumo:
Soils of the tropics are prone to a decrease in quality after conversion from native forest (FO) to a conventional tillage system (CT). However, the adoption of no-tillage (NT) and complex crop rotations may improve soil structural quality. Thus, the aim of this study was to evaluate the physical properties of an Oxisol under FO, CT, and three summer crop sequences in NT: continuous corn (NTcc), continuous soybean (NTcs), and a soybean/corn rotation (NTscr). Both NT and CT decreased soil organic carbon (SOC) content, SOC stock, water stable aggregates (WSA), geometric mean diameter (GMD), soil total porosity (TP), macroporosity (MA), and the least limiting water range (LLWR). However they increased soil bulk density (BD) and tensile strength (TS) of the aggregates when compared to soil under FO. Soil under NT had higher WSA, GMD, BD, TS and microporosty, but lower TP and MA than soil under CT. Soil under FO did not attain critical values for the LLWR, but the lower limit of the LLWR in soils under CT and NT was resistance to penetration (RP) for all values of BD, while the upper limit of field capacity was air-filled porosity for BD values greater than 1.46 (CT), 1.40 (NTscr), 1.42 (NTcc), and 1.41 (NTcs) kg dm-3. Soil under NTcc and NTcs decreased RP even with the increase in BD because of the formation of biopores. Furthermore, higher critical BD was verified under NTcc (1.62 kg dm-3) and NTcs (1.57 kg dm-3) compared to NTscr and CT (1.53 kg dm-3).